123 research outputs found

    Abdominal cyst after early failure of polyethylene liner in total hip arthroplasty

    Get PDF
    We report a case in which the early failure of a polyethylene liner, coupled with a 32-mm CrCo ball head, caused pelvic cyst formation simulating an abdominal mass. The presence of the mass with inguinal swelling lead us to diagnosis liner failure, as shown by radiography. An extraperitoneal cyst surrounding the iliopsoas muscle from the lesser trochanter up to the lumbosacral junction was demonstrated with pre-operative computed tomography and sonography. The cyst contained fluid and many large particles of polyethylene debris. The liner and the head were substituted and the cyst was removed through a different abdominal approach. We hypothesize that debris falls out and concentrates along the iliopsoas muscle from the very beginning of wear, and then the muscle concentration forces pumped it along the muscle belly. From the histologic point of view, large polyethylene particles were observed in the removed tissue, and no major osteoclastic activation was found

    Ultrastructural and molecular analysis of the origin and differentiation of cells mediating brittle star skeletal regeneration

    Get PDF
    Background: Regeneration is the ability to re-grow body parts or tissues after trauma, and it is widespread across metazoans. Cells involved in regeneration can arise from a pool of undifferentiated proliferative cells or be recruited from pre-existing differentiated tissues. Both mechanisms have been described in different phyla; however, the cellular and molecular mechanisms employed by different animals to restore lost tissues as well as the source of cells involved in regeneration remain largely unknown. Echinoderms are a clade of deuterostome invertebrates that show striking larval and adult regenerative abilities in all extant classes. Here, we use the brittle star Amphiura filiformis to investigate the origin and differentiation of cells involved in skeletal regeneration using a combination of microscopy techniques and molecular markers. Results: Our ultrastructural analyses at different regenerative stages identify a population of morphologically undifferentiated cells which appear in close contact with the proliferating epithelium of the regenerating aboral coelomic cavity. These cells express skeletogenic marker genes, such as the transcription factor alx1 and the differentiation genes c-lectin and msp130L, and display a gradient of morphological differentiation from the aboral coelomic cavity towards the epidermis. Cells closer to the epidermis, which are in contact with developing spicules, have the morphology of mature skeletal cells (sclerocytes), and express several skeletogenic transcription factors and differentiation genes. Moreover, as regeneration progresses, sclerocytes show a different combinatorial expression of genes in various skeletal elements. Conclusions: We hypothesize that sclerocyte precursors originate from the epithelium of the proliferating aboral coelomic cavity. As these cells migrate towards the epidermis, they differentiate and start secreting spicules. Moreover, our study shows that molecular and cellular processes involved in skeletal regeneration resemble those used during skeletal development, hinting at a possible conservation of developmental programmes during adult regeneration. Finally, we highlight that many genes involved in echinoderm skeletogenesis also play a role in vertebrate skeleton formation, suggesting a possible common origin of the deuterostome endoskeleton pathway

    Hospital school program: The right to education for long-term care children

    Get PDF
    Education and health are two inseparable aspects of a single dynamic which aims to support and increase the physical and mental well-being of children and young people. Children must be guaranteed two rights: the right to study and the right to health. Schools capable of reconciling these two fundamental needs are represented by school in hospital and home schooling. Thanks to this flexible teaching method, it is possible to support the child and his or her family during hospitalization, and to prevent consequences such as school failure and dropout. Hospitalization is always a traumatic event for children, in which white coats are unknown figures, perceived all the more threatening the younger the child: a threat to one’s integrity, loss of autonomy, distorted perception of time, loss of confidence, and a sense of abandonment. Therefore, it is important to create a communicative basis that facilitates the child’s adaptation to the new hospital environment and establishes continuity during this period of time. Teachers play a significant role within the context of such difficulties. They need to understand patients’ emotions and act as a bridge between the small inpatient room of the child and the outside world. In this article we examined: (1) the School in Hospital and the reasons why it is a valid resource for the psychophysical rehabilitation of the student in a hospital; (2) the role of the teacher in hospital and the difficult context in which the teacher has to work; and (3) how the school in hospital was challenged by the SARS-CoV2 pandemic

    Journey through crohn’s disease complication: From fistula formation to future therapies

    Get PDF
    Crohn’s Disease (CD) is a chronic inflammatory disorder in which up to 50% of patients develop fistula within 20 years after the initial diagnosis, and half of these patients suffer perianal fistulizing disease. The etiopathogenesis of CD-related perianal fistula is still unclear, and its phe-notypical and molecular characteristics are even more indefinite. A better understanding would be crucial to develop targeted and more effective therapeutic strategies. At present, the most accredited theory for the formation of CD-related fistula identifies the epithelial-to-mesenchymal transition (EMT) as the driving force. It has been well recognized that CD carries an increased risk of malig-nancy, particularly mucinous adenocarcinoma is often associated with long-standing fistula in CD patients. Despite the availability of multiple treatment options, perianal fistulizing CD represents a therapeutic challenge and is associated with an important impact on patients’ quality of life. To date, the most effective management is multidisciplinary with the cooperation of gastroenterologists, surgeons, radiologists, and nutritionists and the best recommended treatment is a combination of medical and surgical approaches

    ITGB2 mutation combined with deleted ring 21 chromosome in a child with leukocyte adhesion deficiency

    Get PDF
    Leukocyte adhesion deficiency type 1(LAD-1) is a rare autosomal recessive primary immunodeficiency caused by defects in the ITGB2 gene located on chromosome 21q22. Clinically, LAD-1 patients are characterized by recurrent infections, slow wound healing and dystrophic scars after skin injuries, associated with persistent neutrophilia. The severity of symptoms is related to the level of CD11/CD18 expression on patients’ leucocytes and those with less than 1% expression treated with hematopoietic stem cell transplant (HSCT). We present a child affected by LAD-1 who received HSCT from a matched unrelated donor. Molecular analysis revealed apparent homozygosis for a point mutation in the ITGB2 gene, only the mother however was carrier of the mutation. Cytogenetic and FISH analysis showed the presence of a de-novo ring chromosome 21. Whole Genome Analysis with the Affymetrix GeneChip Human Mapping 250K NspI array confirmed in the child the presence of a de novo deletion of the chromosomal region 21q22.3-qter, where the ITGB2 gene maps. While HSCT resulted in successful engraftment and correction of the immunodeficiency, all the phenotypic features of ring (21) syndrome with a deletion of a 4.6Mb (including 69 genes) clearly remained unchange

    826. Transduction of Human Hematopoietic Stem Cells by RD114-TR-Pseudotyped Lentiviral Vectors

    Get PDF
    HIV-1-derived lentiviral vectors are efficiently pseudotyped by a chimeric envelope (RD114-TR) encoding the extracellular and transmembrane domains of the FLV RD114 glycoprotein fused to cytoplasmic tail (TR) of the MLV 4070A amphotropic glycoprotein. RD114-TR pseudotyped vectors may be concentrated by centrifugation, are resistant to complement inactivation, and are of particular interest for both ex vivo and in vivo gene therapy applications. We carried out a comparative analysis of VSV-G and RD114-TR-pseudotyped lentiviral vectors in transducing human cord blood-derived CD34+ hematopoietic stem/progenitor cells. Transduction efficiency was comparatively analysed in CD34+ cells in liquid culture, in the progeny of CD34+ clonogenic progenitors in semi-solid culture, and in the progeny of CD34+ repopulating stem cells after xeno-transplantation in NOD-SCID mice. In all cases, RD114-TR-pseudotyped vectors transduced hematopoietic cells at lower m.o.i., resulting in lower toxicity and more efficient stable transduction at comparable vector copy number per genome. Potential changes in CD34+ cells transcription profile and phenotype upon transduction with RD114-TR or VSV-G-pseudotyped vectors was investigated by Affymetrix Gene Chips microarray analysis. We found no significant difference in gene expression patterns between mock-RD114-TR and VSV-G-transduced cells. Our study show that the biology of repopulating hematopoietic stem cells and their progeny is not affected by transduction with RD114-TR-pseudotyped lentiviral vectors

    Generation of induced Pluripotent Stem Cells (UNIBSi008-A, UNIBSi008-B, UNIBSi008-C) from an Ataxia-Telangiectasia (AT) patient carrying a novel homozygous deletion in ATM gene.

    Get PDF
    Abstract Using a Sendai Virus based vector delivering Yamanaka Factors, we generated induced Pluripotent Stem Cells (iPSCs) from peripheral blood mononuclear cells of a patient affected by Ataxia Telangiectasia (AT), caused by a novel homozygous deletion in ATM, spanning exons 5 to 7. Three clones were fully characterized for pluripotency and capability to differentiate. These clones preserved the causative mutation of parental cells and genomic stability over time (>100 passages). Furthermore, in AT derived iPSCs we confirmed the impaired DNA damage response after ionizing radiation. All these data underline potential usefulness of our clones as in vitro AT disease model

    Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells

    Get PDF
    BACKGROUND AIMS: Pancreatic cancer (pCa) is a tumor characterized by a fibrotic state and associated with a poor prognosis. The observation that mesenchymal stromal cells (MSCs) migrate toward inflammatory micro-environments and engraft into tumor stroma after systemic administration suggested new therapeutic approaches with the use of engineered MSCs to deliver and produce anti-cancer molecules directly within the tumor. Previously, we demonstrated that without any genetic modifications, MSCs are able to deliver anti-cancer drugs. MSCs loaded with paclitaxel by exposure to high concentrations release the drug both in vitro and in vivo, inhibiting tumor proliferation. On the basis of these observations, we evaluated the ability of MSCs (from bone marrow and pancreas) to uptake and release gemcitabine (GCB), a drug widely used in pCa treatment. METHODS: MSCs were primed by 24-h exposure to 2000 ng/mL of GCB. The anti-tumor potential of primed MSCs was then investigated by in vitro anti-proliferation assays with the use of CFPAC-1, a pancreatic tumor cell line sensitive to GCB. The uptake/release ability was confirmed by means of high-performance liquid chromatography analysis. A cell-cycle study and secretome evaluation were also conducted to better understand the characteristics of primed MSCs. RESULTS: GCB-releasing MSCs inhibit the growth of a human pCa cell line in vitro. CONCLUSIONS: The use of MSCs as a "trojan horse" can open the way to a new pCa therapeutic approach; GCB-loaded MSCs that integrate into the tumor mass could deliver much higher concentrations of the drug in situ than can be achieved by intravenous injection

    Una aproximación al perfil de los estudiantes de Ciencias Exactas y Naturales de la UNaF

    Get PDF
    El objetivo central del proyecto denominado "Evaluación y fortalecimiento de competencias en Ciencias Naturales y Exactas de ingresantes a la UNaF, Años 2007-2008" estuvo orientado a evaluar en los estudiantes las competencias, en tanto capacidades requeridas por el área de Ciencias Naturales y Exactas, que les permiten al alumno el acceso al conocimiento de las mismas. Estuvo a cargo de dos sub-equipos: uno de ellos se dedicó a evaluar las competencias con las que el estudiante ingresa a la Universidad. El otro se abocó a la búsqueda de una aproximación al perfil "real" del estudiante. El presente trabajo pertenece a este último subgrupo, y su objetivo fue relevar información en las cuatro unidades académicas de la UNaF, en los ciclos lectivos 2007 y 2008, con el fin de construir tal perfil para que sirviese de soporte al estudio de las competencias.Trabajos del área Ciencias NaturalesDepartamento de Ciencias Exactas y Naturale
    • …
    corecore