3,255 research outputs found
FOOD INDUSTRY EDUCATION AND TRAINING: MODELS FOR THE FUTURE, PEOPLE, PRODUCTIVITY AND THE FOOD INDUSTRY MANAGER
Agribusiness,
A study of the optimization method used in the NAVY/NASA gas turbine engine computer code
Sources of numerical noise affecting the convergence properties of the Powell's Principal Axis Method of Optimization in the NAVY/NASA gas turbine engine computer code were investigated. The principal noise source discovered resulted from loose input tolerances used in terminating iterations performed in subroutine CALCFX to satisfy specified control functions. A minor source of noise was found to be introduced by an insufficient number of digits in stored coefficients used by subroutine THERM in polynomial expressions of thermodynamic properties. Tabular results of several computer runs are presented to show the effects on program performance of selective corrective actions taken to reduce noise
Density and spin response function of a normal Fermi gas at unitarity
Using Landau theory of Fermi liquids we calculate the dynamic response of
both a polarized and unpolarized normal Fermi gas at zero temperature in the
strongly interacting regime of large scattering length. We show that at small
excitation energies the {\it in phase} (density) response is enhanced with
respect to the ideal gas prediction due to the increased compressibility.
Viceversa, the {\it out of phase} (spin) response is quenched as a consequence
of the tendency of the system to pair opposite spins. The long wavelength
behavior of the static structure factor is explicitly calculated. The results
are compared with the predictions in the collisional and superfluid regimes.
The emergence of a spin zero sound solution in the unpolarized normal phase is
explicitly discussed.Comment: 4 pages, 2 figure
An efficient method for the Quantum Monte Carlo evaluation of the static density-response function of a many-electron system
In a recent Letter we introduced Hellmann-Feynman operator sampling in
diffusion Monte Carlo calculations. Here we derive, by evaluating the second
derivative of the total energy, an efficient method for the calculation of the
static density-response function of a many-electron system. Our analysis of the
effect of the nodes suggests that correlation is described correctly and we
find that the effect of the nodes can be dealt with
Magnetoplasmons in layered graphene structures
We calculate the dispersion equations for magnetoplasmons in a single layer,
a pair of parallel layers, a graphite bilayer and a superlattice of graphene
layers in a perpendicular magnetic field. We demonstrate the feasibility of a
drift-induced instability of magnetoplasmons. The magnetoplasmon instability in
a superlattice is enhanced compared to a single graphene layer. The energies of
the unstable magnetoplasmons could be in the terahertz (THz) part of the
electromagnetic spectrum. The enhanced instability makes superlattice graphene
a potential source of THz radiation.Comment: 5 pages, 4 figure
Transport Equations and Spin-Charge Propagating Mode in the Two Dimensional Hole Gas
We find that the spin-charge motion in a strongly confined two-dimensional
hole gas (2DHG) supports a propagating mode of cubic dispersion apart from the
diffusive mode due to momentum scattering. Propagating modes seem to be a
generic property of systems with spin-orbit coupling. Through a rigorous
Keldysh approach, we obtain the transport equations for the 2DHG, we analyze
the behavior of the hole spin relaxation time, the diffusion coefficients, and
the spin-charge coupled motion
Study to document low thrust trajectory optimization programs HILTOP and ASTOP
Detailed documentation of the HILTOP and ASTOP computer programs is presented along with results of the analyses of the possible extension of the HILTOP program and results of an extra-ecliptic mission study performed with HILTOP
Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas
The discrete Fourier transform is approximated by summing over part of the
terms with corresponding weights. The approximation reduces significantly the
requirement for computer memory storage and enhances the numerical computation
efficiency with several orders without loosing accuracy. As an example, we
apply the algorithm to study the three-dimensional interacting electron gas
under the renormalized-ring-diagram approximation where the Green's function
needs to be self-consistently solved. We present the results for the chemical
potential, compressibility, free energy, entropy, and specific heat of the
system. The ground-state energy obtained by the present calculation is compared
with the existing results of Monte Carlo simulation and random-phase
approximation.Comment: 11 pages, 13 figure
Isospin and density dependences of nuclear matter symmetry energy coefficients II
Symmetry energy coefficients of explicitly isospin asymmetric nuclear matter
at variable densities (from .5 up to 2 ) are studied as
generalized screening functions. An extended stability condition for asymmetric
nuclear matter is proposed. We find the possibility of obtaining stable
asymmetric nuclear matter even in some cases for which the symmetric nuclear
matter limit is unstable. Skyrme-type forces are extensively used in analytical
expressions of the symmetry energy coefficients derived as generalized
screening functions in the four channels of the particle hole interaction
producing alternative behaviors at different and (respectively the
density and the asymmetry coefficient). The spin and spin-isospin coefficients,
with corrections to the usual Landau Migdal parameters, indicate the
possibility of occurring instabilities with common features depending on the
nuclear density and n-p asymmetry. Possible relevance for high energy heavy
ions collisions and astrophysical objects is discussed.Comment: 16 pages (latex) plus twelve figures in four eps files, to be
published in I.J.M.P.
Umklapp collisions and center of mass oscillation of a trapped Fermi gas
Starting from the the Boltzmann equation, we study the center of mass
oscillation of a harmonically trapped normal Fermi gas in the presence of a
one-dimensional periodic potential. We show that for values of the the Fermi
energy above the first Bloch band the center of mass motion is strongly damped
in the collisional regime due to umklapp processes. This should be contrasted
with the behaviour of a superfluid where one instead expects the occurrence of
persistent Josephson-like oscillations.Comment: 11 pages, 3 figures, corrected typo
- …