The discrete Fourier transform is approximated by summing over part of the
terms with corresponding weights. The approximation reduces significantly the
requirement for computer memory storage and enhances the numerical computation
efficiency with several orders without loosing accuracy. As an example, we
apply the algorithm to study the three-dimensional interacting electron gas
under the renormalized-ring-diagram approximation where the Green's function
needs to be self-consistently solved. We present the results for the chemical
potential, compressibility, free energy, entropy, and specific heat of the
system. The ground-state energy obtained by the present calculation is compared
with the existing results of Monte Carlo simulation and random-phase
approximation.Comment: 11 pages, 13 figure