305 research outputs found
Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells
Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication
Recommended from our members
Specific Mesenchymal/Epithelial Induction of Olfactory Receptor, Vomeronasal, and Gonadotropin-Releasing Hormone (GnRH) Neurons
We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs), and gonadotropin-releasing hormone (GnRH) neurons, the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions specify the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons.Molecular and Cellular Biolog
The p53 tumour suppressor inhibits glucocorticoid‐induced proliferation of erythroid progenitors
Hypoxia encountered at high altitude, blood loss and erythroleukemia instigate stress erythropoiesis, which involves glucocorticoid-induced proliferation of erythroid progenitors (ebls). The tumour suppressor p53 stimulates hematopoietic cell maturation and antagonizes glucocorticoid receptor (GR) activity in hypoxia, suggesting that it may inhibit stress erythropoiesis. We report that mouse fetal liver ebls that lack p53 proliferate better than wild-type cells in the presence of the GR agonist dexamethasone. An important mediator of GR-induced ebl self-renewal, the c-myb gene, is induced to higher levels in p53(–/–) ebls by dexamethasone. The stress response to anemia is faster in the spleens of p53(–/–) mice, as shown by the higher levels of colony forming units erythroids and the increase in the CD34/c-kit double positive population. Our results show that p53 antagonizes GR-mediated ebl expansion and demonstrate for the first time that p53–GR cross-talk is important in a physiological process in vivo: stress erythropoiesis
Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm
Sox2 is expressed in developing foregut endoderm, with highest levels in the future esophagus and anterior stomach. By contrast, Nkx2.1 (Titf1) is expressed ventrally, in the future trachea. In humans, heterozygosity for SOX2 is associated with anopthalmiaesophageal-genital syndrome (OMIM 600992), a condition including esophageal atresia (EA) and tracheoesophageal fistula (TEF), in which the trachea and esophagus fail to separate. Mouse embryos heterozygous for the null allele, Sox2EGFP, appear normal. However, further reductions in Sox2, using Sox2LP and Sox2COND hypomorphic alleles, result in multiple abnormalities. Approximately 60% of Sox2EGFP/COND embryos have EA with distal TEF in which Sox2 is undetectable by immunohistochemistry or western blot. The mutant esophagus morphologically resembles the trachea, with ectopic expression of Nkx2.1, a columnar, ciliated epithelium, and very few p63+ basal cells. By contrast, the abnormal foregut of Nkx2.1-null embryos expresses elevated Sox2 and p63, suggesting reciprocal regulation of Sox2 and Nkx2.1 during early dorsal/ventral foregut patterning. Organ culture experiments further suggest that FGF signaling from the ventral mesenchyme regulates Sox2 expression in the endoderm. In the 40% Sox2EGFP/COND embryos in which Sox2 levels are ~18% of wild type there is no TEF. However, the esophagus is still abnormal, with luminal mucus-producing cells, fewer p63+ cells, and ectopic expression of genes normally expressed in glandular stomach and intestine. In all hypomorphic embryos the forestomach has an abnormal phenotype, with reduced keratinization, ectopic mucus cells and columnar epithelium. These findings suggest that Sox2 plays a second role in establishing the boundary between the keratinized, squamous esophagus/forestomach and glandular hindstomach
Knockdown of ZNF268, which Is Transcriptionally Downregulated by GATA-1, Promotes Proliferation of K562 Cells
The human ZNF268 gene encodes a typical KRAB-C2H2 zinc finger protein that may participate in hematopoiesis and leukemogenesis. A recent microarray study revealed that ZNF268 expression continuously decreases during erythropoiesis. However, the molecular mechanisms underlying regulation of ZNF268 during hematopoiesis are not well understood. Here we found that GATA-1, a master regulator of erythropoiesis, repressed the promoter activity and transcription of ZNF268. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that GATA-1 directly bound to a GATA binding site in the ZNF268 promoter in vitro and in vivo. Knockdown of ZNF268 in K562 erythroleukemia cells with specific siRNA accelerated cellular proliferation, suppressed apoptosis, and reduced expression of erythroid-specific developmental markers. It also promoted growth of subcutaneous K562-derived tumors in nude mice. These results suggest that ZNF268 is a crucial downstream target and effector of GATA-1. They also suggest the downregulation of ZNF268 by GATA-1 is important in promoting the growth and suppressing the differentiation of K562 erythroleukemia cells
Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development
Organ growth occurs through the integration of external growth signals during the G1 phase of the cell cycle to initiate DNA replication. Although numerous growth factor signals have been shown to be required for the proliferation of cardiomyocytes, genetic studies have only identified a very limited number of transcription factors that act to regulate the entry of cardiomyocytes into S phase. Here, we report that the cardiac para-zinc-finger protein CASZ1 is expressed in murine cardiomyocytes. Genetic fate mapping with an inducible Casz1 allele demonstrates that CASZ1-expressing cells give rise to cardiomyocytes in the first and second heart fields. We show through the generation of a cardiac conditional null mutation that Casz1 is essential for the proliferation of cardiomyocytes in both heart fields and that loss of Casz1 leads to a decrease in cardiomyocyte cell number. We further report that the loss of Casz1 leads to a prolonged or arrested S phase, a decrease in DNA synthesis, an increase in phospho-RB and a concomitant decrease in the cardiac mitotic index. Taken together, these studies establish a role for CASZ1 in mammalian cardiomyocyte cell cycle progression in both the first and second heart fields
Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1
In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon–glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane
The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone
Coordinated regulation of neuronal progenitor differentiation in the subventricular zone (SVZ) is a fundamental feature of adult neurogenesis. However, the molecular control of this process remains mostly undeciphered. Here, we investigate the role of neuregulins (NRGs) in this process and show that a NRG receptor, ErbB4, is primarily expressed by polysialylated neural cell adhesion molecule immature neuroblasts but is also detected in a subset of GFAP+ astroglial cells, ependymal cells, and Dlx2+ precursors in the SVZ. Of the NRG ligands, both NRG1 and -2 are expressed by immature polysialylated neural cell adhesion molecule neuroblasts in the SVZ. NRG2 is also expressed by some of the GFAP+ putative stem cells lining the ventricles. Infusion of exogenous NRG1 leads to rapid aggregation of Dlx2+ cells in the SVZ and affects the initiation and maintenance of organized neuroblast migration from the SVZ toward the olfactory bulb. In contrast, the infusion of NRG2 increased the number of Sox2 and GFAP+ precursors in the SVZ. An outcome of this NRG2 effect is an increase in the number of newly generated migrating neuroblasts in the rostral migratory stream and GABAergic interneurons in the olfactory bulb. The analysis of conditional null mice that lack NRG receptor, ErbB4, in the nervous system revealed that the observed activities of NRG2 require ErbB4 activation. These results indicate that different NRG ligands affect distinct populations of differentiating neural precursors in the neurogenic regions of the mature forebrain. Furthermore, these studies identify NRG2 as a factor capable of promoting SVZ proliferation, leading to the formation of new neurons in vivo
The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone
Coordinated regulation of neuronal progenitor differentiation in the subventricular zone (SVZ) is a fundamental feature of adult neurogenesis. However, the molecular control of this process remains mostly undeciphered. Here, we investigate the role of neuregulins (NRGs) in this process and show that a NRG receptor, ErbB4, is primarily expressed by polysialylated neural cell adhesion molecule immature neuroblasts but is also detected in a subset of GFAP+ astroglial cells, ependymal cells, and Dlx2+ precursors in the SVZ. Of the NRG ligands, both NRG1 and -2 are expressed by immature polysialylated neural cell adhesion molecule neuroblasts in the SVZ. NRG2 is also expressed by some of the GFAP+ putative stem cells lining the ventricles. Infusion of exogenous NRG1 leads to rapid aggregation of Dlx2+ cells in the SVZ and affects the initiation and maintenance of organized neuroblast migration from the SVZ toward the olfactory bulb. In contrast, the infusion of NRG2 increased the number of Sox2 and GFAP+ precursors in the SVZ. An outcome of this NRG2 effect is an increase in the number of newly generated migrating neuroblasts in the rostral migratory stream and GABAergic interneurons in the olfactory bulb. The analysis of conditional null mice that lack NRG receptor, ErbB4, in the nervous system revealed that the observed activities of NRG2 require ErbB4 activation. These results indicate that different NRG ligands affect distinct populations of differentiating neural precursors in the neurogenic regions of the mature forebrain. Furthermore, these studies identify NRG2 as a factor capable of promoting SVZ proliferation, leading to the formation of new neurons in vivo
Specific mesenchymal/epithelial induction of olfactory receptor, vomeronasal, and gonadotropin-releasing hormone (GnRH) neurons
We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs) and gonadotropin releasing hormone (GnRH) neurons—the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions, specifies the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons
- …