190 research outputs found
Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation.
Satellite observations over the past two decades have revealed increasing loss of grounded ice in West Antarctica, associated with floating ice shelves that have been thinning. Thinning reduces an ice-shelf's ability to restrain grounded-ice discharge, yet our understanding of the climate processes that drive mass changes is limited. Here, we use ice-shelf height data from four satellite altimeter missions (1994-2017) to show a direct link between ice-shelf-height variability in the Antarctic Pacific sector and changes in regional atmospheric circulation driven by the El Niño-Southern Oscillation. This link is strongest from Dotson to Ross ice shelves and weaker elsewhere. During intense El Niño years, height increase by accumulation exceeds the height decrease by basal melting, but net ice-shelf mass declines as basal ice loss exceeds lower-density snow gain. Our results demonstrate a substantial response of Amundsen Sea ice shelves to global and regional climate variability, with rates of change in height and mass on interannual timescales that can be comparable to the longer-term trend, and with mass changes from surface accumulation offsetting a significant fraction of the changes in basal melting. This implies that ice-shelf height and mass variability will increase as interannual atmospheric variability increases in a warming climate
Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's response to sea-ice cover in Nares Strait
Petermann Gletscher drains ~4% of the Greenland ice sheet (GrIS) area, with ~80% of its mass loss occurring by basal melting of its ice shelf. We use a high-resolution coupled ocean and sea-ice model with a thermodynamic glacial ice shelf to diagnose ocean-controlled seasonality in basal melting of the Petermann ice shelf. Basal melt rates increase by ~20% in summer due to a seasonal shift in ocean circulation within Nares Strait that is associated with the transition from landfast sea ice to mobile sea ice. Under landfast ice, cold near-surface waters are maintained on the eastern side of the strait and within Petermann Fjord, reducing basal melt and insulating the ice shelf. Under mobile sea ice, warm waters are upwelled on the eastern side of the strait and, mediated by local instabilities and eddies, enter Petermann Fjord, enhancing basal melt down to depths of 200 m. The transition between these states occurs rapidly, and seasonal changes within Nares Strait are conveyed into the fjord within the same season. These results suggest that long-term changes in the length of the landfast sea-ice season will substantially alter the structure of Petermann ice shelf and its contribution to GrIS mass loss
Ice-Tethered Profiler observations of the double-diffusive staircase in the Canada Basin thermocline
Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C00A02, doi:10.1029/2008JC004829.Six Ice-Tethered Profilers (ITP), deployed in the central Canada Basin of the Arctic Ocean between 2004 and 2007, have provided detailed potential temperature and salinity measurements of a double-diffusive staircase at about 200–300 m depth. Individual layers in the staircase are of order 1 m in vertical height but appear to extend horizontally for hundreds of kilometers, with along-layer gradients of temperature and salinity tightly related. On the basis of laboratory-derived double-diffusive flux laws, estimated vertical heat fluxes through the staircase are in the range 0.05–0.3 W m−2, only about one tenth of the estimated mean surface mixed layer heat flux to the sea ice. It is thus concluded that the vertical transport of heat from the Atlantic Water in the central basin is unlikely to have a significant impact to the Canada Basin ocean surface heat budget. Icebreaker conductivity-temperature-depth data from the Beaufort Gyre Freshwater Experiment show that the staircase is absent at the basin periphery. Turbulent mixing that presumably disrupts the staircase might drive greater flux from the Atlantic Water at the basin boundaries and possibly dominate the regionally averaged heat flux.Funding for construction and deployment
of the prototype ITPs was provided by the National Science Foundation
Oceanographic Technology and Interdisciplinary Coordination (OTIC)
Program and Office of Polar Programs (OPP) under grant OCE-0324233.
Continued support for the ITP field program and data analysis has been
provided by the OPP Arctic Sciences Section under awards ARC-0519899,
ARC-0631951, ARC-0713837, and internal WHOI funding
Modeling ocean eddies on Antarctica's cold water continental shelves and their effects on ice shelf basal melting
Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 5067-5084, doi: 10.1029/2018JC014688.Changes in the rate of ocean‐driven basal melting of Antarctica's ice shelves can alter the rate at which the grounded ice sheet loses mass and contributes to sea level change. Melt rates depend on the inflow of ocean heat, which occurs through steady circulation and eddy fluxes. Previous studies have demonstrated the importance of eddy fluxes for ice shelves affected by relatively warm intrusions of Circumpolar Deep Water. However, ice shelves on cold water continental shelves primarily melt from dense shelf water near the grounding line and from light surface water at the ice shelf front. Eddy effects on basal melt of these ice shelves have not been studied. We investigate where and when a regional ocean model of the Ross Sea resolves eddies and determine the effect of eddy processes on basal melt. The size of the eddies formed depends on water column stratification and latitude. We use simulations at horizontal grid resolutions of 5 and 1.5 km and, in the 1.5‐km model, vary the degree of topography smoothing. The higher‐resolution models generate about 2–2.5 times as many eddies as the low‐resolution model. In all simulations, eddies cross the ice shelf front in both directions. However, there is no significant change in basal melt between low‐ and high‐resolution simulations. We conclude that higher‐resolution models (<1 km) are required to better represent eddies in the Ross Sea but hypothesize that basal melt of the Ross Ice Shelf is relatively insensitive to our ability to fully resolve the eddy field.This research was funded by NSF's Antarctic Research Program (ANT‐0944174, ANT‐0944165, and ANT‐1443677), Ocean Sciences Program (OCE‐1357522), and by the Future of Ice Initiative at the University of Washington. It was supported by the Turing High Performance Computing Cluster at Old Dominion University. S. M. acknowledges the support of her dissertation committee. Portions of this work appear in S. M.'s PhD thesis. The eddy tracking code and specific version of ROMS are on S. M.'s github (https://github.com/mnemoniko). Forcing files to run the simulations described are in three separate records on zenodo.org under DOIs 10.5281/zenodo.2649541, 10.5281/zenodo.2649547, and 10.5281/zenodo.2650294. We thank three anonymous reviewers for their helpful suggestions.2020-01-0
Turbulent kinetic energy dissipation in Barrow Canyon
Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1012–1021, doi:10.1175/JPO-D-11-0184.1.Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast corner of the Chukchi. Barrow Canyon is a region of complex geometry and forcing where a variety of water masses have been observed to coexist. These factors contribute to a dynamic physical environment, with the potential for significant water mass transformation. The measurements of turbulent kinetic energy dissipation presented here indicate diapycnal mixing is important in the upper canyon. Elevated dissipation rates were observed near the pycnocline, effectively mixing winter and summer water masses, as well as within the bottom boundary layer. The slopes of shear/stratification layers, combined with analysis of rotary spectra, suggest that near-inertial wave activity may be important in modulating dissipation near the bottom. Because the canyon is known to be a hotspot of productivity with an active benthic community, mixing may be an important factor in maintenance of the biological environment.ELS was supported as a WHOI Postdoctoral
Scholar through the WHOI Ocean and Climate
Change Institute.2012-12-0
The structural and dynamic responses of Stange Ice Shelf to recent environmental change
Stange Ice Shelf is the most south-westerly ice shelf on the Antarctic Peninsula, a region where positive trends in atmospheric and oceanic temperatures have been recently documented. In this paper, we use a range of remotely sensed datasets to evaluate the structural and dynamic responses of Stange Ice Shelf to these environmental changes. Ice shelf extent and surface structures were examined at regular intervals from optical and radar satellite imagery between 1973 and 2011. Surface speeds were estimated in 1989, 2004 and 2010 by tracking surface features in successive satellite images. Surface elevation change was estimated using radar altimetry data acquired between 1992 and 2008 by the European Remote Sensing Satellite (ERS) -1, -2 and Envisat. The mean number of surface melt days was estimated using the intensity of backscatter from Envisat’s Advanced Synthetic Aperture Radar instrument between 2006 and 2012. These results show significant shear fracturing in the southern portion of the ice shelf linked to enhanced flow speed as a consequence of measured thinning. However, we conclude that, despite the observed changes, Stange Ice Shelf is currently stable
Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 4214–4233, doi:10.1002/2014JC009792.Basal melting of ice shelves is an important, but poorly understood, cause of Antarctic ice sheet mass loss and freshwater production. We use data from two moorings deployed through Ross Ice Shelf, ∼6 and ∼16 km south of the ice front east of Ross Island, and numerical models to show how the basal melting rate near the ice front depends on sub-ice-shelf ocean variability. The moorings measured water velocity, conductivity, and temperature for ∼2 months starting in late November 2010. About half of the current velocity variance was due to tides, predominantly diurnal components, with the remainder due to subtidal oscillations with periods of a few days. Subtidal variability was dominated by barotropic currents that were large until mid-December and significantly reduced afterward. Subtidal currents were correlated between moorings but uncorrelated with local winds, suggesting the presence of waves or eddies that may be associated with the abrupt change in water column thickness and strong hydrographic gradients at the ice front. Estimated melt rate was ∼1.2 ± 0.5 m a−1 at each site during the deployment period, consistent with measured trends in ice surface elevation from GPS time series. The models predicted similar annual-averaged melt rates with a strong annual cycle related to seasonal provision of warm water to the ice base. These results show that accurately modeling the high spatial and temporal ocean variability close to the ice-shelf front is critical to predicting time-dependent and mean values of meltwater production and ice-shelf thinning.The Woods Hole Oceanographic
Institution (WHOI) participation in the
ANDRILL Coulman High Program was
supported by the National Science
Foundation Office of Polar Programs
(NSF ANT-0839108) through a
subcontract from the University of
Nebraska, Lincoln (UNL 25-0550-0004-004). I. Arzeno was
supported as a 2011 WHOI Summer
Student Fellow through the NSF
Research Experiences for
Undergraduates program (OCE-
0649139). L. Padman and S. Springer
were supported by NASA grant
NNX10AG19G to Earth & Space
Research (ESR). M. Williams and C.
Stewart were supported by the New
Zealand National Institute of Water
and Atmosphere (NIWA) core funding
under the National Climate Centre,
and the Ministry of Business,
Innovation, and Employment (Contract
CO5X1001).2015-01-0
Structure and dynamics of mesoscale eddies over the Laptev Sea continental slope in the Arctic Ocean
Heat fluxes steered by mesoscale eddies may be a significant, but still not
quantified, source of heat to the surface mixed layer and sea ice cover in
the Arctic Ocean, as well as a source of nutrients for enhancing seasonal
productivity in the near-surface layers. Here we use 4 years (2007–2011)
of velocity and hydrography records from a moored profiler over the Laptev
Sea slope and 15 months (2008–2009) of acoustic Doppler current profiler
data from a nearby mooring to investigate the structure and dynamics of
eddies at the continental margin of the eastern Eurasian Basin. Typical eddy
scales are radii of the order of 10 km, heights of 600 m, and
maximum velocities of ∼ 0.1 m s−1. Eddies are
approximately equally divided between cyclonic and anticyclonic
polarizations, contrary to prior observations from the deep basins and along
the Lomonosov Ridge. Eddies are present in the mooring records about 20 %–25 % of the time,
taking about 1 week to pass through the mooring at an
average frequency of about one eddy per month.We found that the eddies observed are formed in two distinct regions – near Fram
Strait, where the western branch of Atlantic Water (AW) enters the Arctic
Ocean, and near Severnaya Zemlya, where the Fram Strait and Barents Sea
branches of the AW inflow merge. These eddies, embedded in the Arctic
Circumpolar Boundary Current, carry anomalous water properties along the
eastern Arctic continental slope. The enhanced diapycnal mixing that we
found within EB eddies suggests a potentially important role for eddies in
the vertical redistribution of heat in the Arctic Ocean interior.</p
Multicolour correlative imaging using phosphor probes
Correlative light and electron microscopy exploits the advantages of optical methods, such as multicolour probes and their use in hydrated live biological samples, to locate functional units, which are then correlated with structural details that can be revealed by the superior resolution of electron microscopes. One difficulty is locating the area imaged by the electron beam in the much larger optical field of view. Multifunctional probes that can be imaged in both modalities and thus register the two images are required. Phosphor materials give cathodoluminescence (CL) optical emissions under electron excitation. Lanthanum phosphate containing thulium or terbium or europium emits narrow bands in the blue, green and red regions of the CL spectrum; they may be synthesised with very uniform-sized crystals in the 10- to 50-nm range. Such crystals can be imaged by CL in the electron microscope, at resolutions limited by the particle size, and with colour discrimination to identify different probes. These materials also give emissions in the optical microscope, by
multiphoton excitation. They have been deposited on the surface of glioblastoma cells and imaged by CL. Gadolinium oxysulphide doped with terbium emits green photons by either ultraviolet or electron excitation. Sixty-nanometre crystals of this phosphor have been imaged in the atmospheric scanning electron microscope (JEOL ClairScope). This probe and microscope combination allow correlative imaging in hydrated samples. Phosphor probes should prove to be very useful in correlative light and electron microscopy, as fiducial
markers to assist in image registration, and in high/super resolution imaging studies
- …