85 research outputs found

    Contact Angle Measurement is an Efficient Tool for the Characterization of Corrosion Pro-tection Nanolayers on Copper Alloys and Stainless Steel

    Get PDF
    With the advent of the nano-era, a pronounced interest in the nanolayers has emerged. The develop-ment of more and more sophisticated measurement devices and techniques made possible the visualiza-tion, characterization and investigation of nanolayers. However, there exists a variety of simple, old means which should not be despised either. In this work, the use of contact angle measurement as a simple, fast, inexpensive and accessible tool for the study of surfaces with and without nanolayers is demonstrated. Furthermore, it is evidenced that in contrast to its simplicity, contact angle measurement can address sur-prisingly complex questions and give proper answers to these. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3525

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Open questions in utility theory

    Get PDF
    Throughout this paper, our main idea is to explore different classical questions arising in Utility Theory, with a particular attention to those that lean on numerical representations of preference orderings. We intend to present a survey of open questions in that discipline, also showing the state-of-art of the corresponding literature.This work is partially supported by the research projects ECO2015-65031-R, MTM2015-63608-P (MINECO/ AEI-FEDER, UE), and TIN2016-77356-P (MINECO/ AEI-FEDER, UE)

    Open-Circuit Photovoltage and Charge Recombination at Semiconductor/Liquid Interfaces

    Get PDF
    The open-circuit photovoltage (Voc) of semiconductor/ liquid junction solar cells is a critical parameter in determining the energy conversion efficiency. The fundamental process controlling Voc is the recombination of photoexcited electrons and holes. 1' 2 The lower the recombination rate, the larger the Voc. The predominant energy-loss mechanism is determined by competition among the following processes: majority-carrier thermionic emission over the surface barrier, ~ majority-carrier charge transfer across the semiconductor/liquid interface, ~' 4 minority-carrier diffusion/recombination in the bulk of the semiconductor, ~' 8 space-charge recombination, 7 and surface recombination mediated by recombination centers. 8-13 The extent to which each of these processes is understood differs considerably. For example, expressions describing the minority-carrier diffusion/recombination in the bulk semiconductor contacting a redox electrolyte is obtained by direct analogy to formulas developed for solid-state p-n junction devices. ~ When bulk diffusion/recombination is the dominant recombination process, the dependence of Vo~ on the semiconductor bandgap, doping level, and minority-carrier diffusion length can be expressed in simple analytic forms? In contrast, surface recombination has generally been treated in a more complex fashion by numerical simulation. TM In cases in which Voe is limited by surface recombination, no simple analytic expression exists for relating Vo~ and the surface recombination velocity (Sr)-Several groups TM have considered theoretically the effect of surface recombination on the performance of photoelectrochemical (PEC) cells. Although each treatment has achieved some success in describing a certain aspect of the effect of surface recombination, these treatments are generally considered qualitative3 ~ For the most part, it has been difficult to extract quantitative information on surface recombination from * Electrochemical Society Active Member. Visiting professor, on leave of absence from Korea University, Seoul, Korea. experimental results because of the number of adjustable (and often arbitrary) parameters involved in numerical analyses. Up to now, only one study 11 has dealt directly with the dependence of Voc on the surface recombination current; however, because bias-independent surface recombination currents in arbitrary units were used in the numerical calculation, it is difficult to apply the model of this study for interpreting quantitatively experimental measurements. Other studies 8-I~ have focused mainly on the general shape of the photocurrent-voltage (J-V) curves, without addressing the dependence of Voo on Sr. b The absence of a theoretical framework relating Sr to Vo~ impedes the understanding of such processes at the solid/liquid interface. In this article, we derive a simple quantitative expression, based on semiconductor solid-state theory, that directly relates Sr to Voc. The applicability of the expression to account for the PEC behavior of n-St/acetone with FeCp~ j~ (ferrocenium ion/ferrocene) is then investigated. Based on J-Vdata and the dependence of Voe on both the temperature and the concentration of FeCp~, we are able to exclude other possible recombination channels and identify surface recombination as the dominant recombination process in determining Voc. The surface recombination velocity deduced from experimental results compares favorably with reported values. The application of the analytic expression to other PEC systems reported in the literature is also discussed. b The effect of surface recombination is generally discussed in terms of the photoeurrent onset potential. However, unlike the concept of the "open-circuit photovoltage," the "photoeurrent onset potential" is an empirical quantity that cannot be precisely defined. The photocurrent onset potential depends on both Voc and the fill factor. The latter two parameters are more definable quantities and are more relevant in calculating the PEC conversion efficiency

    word~river literary review (2010)

    Full text link
    wordriver is a literary journal dedicated to the poetry, short fiction and creative nonfiction of adjuncts and part-time instructors teaching in our universities, colleges, and community colleges. Our premier issue was published in Spring 2009. We are always looking for work that demonstrates the creativity and craft of adjunct/part-time instructors in English and other disciplines. We reserve first publication rights and onetime anthology publication rights for all work published. We define adjunct instructors as anyone teaching part-time or full-time under a semester or yearly contract, nationwide and in any discipline. Graduate students teaching under part-time contracts during the summer or who have used up their teaching assistant time and are teaching with adjunct contracts for the remainder of their graduate program also are eligible.https://digitalscholarship.unlv.edu/word_river/1000/thumbnail.jp

    CORROSION PATTERN FORMATION IN ALUMINIUM THIN LAYERS

    No full text
    corecore