4,119 research outputs found

    Massive MU-MIMO Downlink TDD Systems with Linear Precoding and Downlink Pilots

    Full text link
    We consider a massive MU-MIMO downlink time-division duplex system where a base station (BS) equipped with many antennas serves several single-antenna users in the same time-frequency resource. We assume that the BS uses linear precoding for the transmission. To reliably decode the signals transmitted from the BS, each user should have an estimate of its channel. In this work, we consider an efficient channel estimation scheme to acquire CSI at each user, called beamforming training scheme. With the beamforming training scheme, the BS precodes the pilot sequences and forwards to all users. Then, based on the received pilots, each user uses minimum mean-square error channel estimation to estimate the effective channel gains. The channel estimation overhead of this scheme does not depend on the number of BS antennas, and is only proportional to the number of users. We then derive a lower bound on the capacity for maximum-ratio transmission and zero-forcing precoding techniques which enables us to evaluate the spectral efficiency taking into account the spectral efficiency loss associated with the transmission of the downlink pilots. Comparing with previous work where each user uses only the statistical channel properties to decode the transmitted signals, we see that the proposed beamforming training scheme is preferable for moderate and low-mobility environments.Comment: Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, Illinois, Oct. 201

    Aspects of Favorable Propagation in Massive MIMO

    Full text link
    Favorable propagation, defined as mutual orthogonality among the vector-valued channels to the terminals, is one of the key properties of the radio channel that is exploited in Massive MIMO. However, there has been little work that studies this topic in detail. In this paper, we first show that favorable propagation offers the most desirable scenario in terms of maximizing the sum-capacity. One useful proxy for whether propagation is favorable or not is the channel condition number. However, this proxy is not good for the case where the norms of the channel vectors may not be equal. For this case, to evaluate how favorable the propagation offered by the channel is, we propose a ``distance from favorable propagation'' measure, which is the gap between the sum-capacity and the maximum capacity obtained under favorable propagation. Secondly, we examine how favorable the channels can be for two extreme scenarios: i.i.d. Rayleigh fading and uniform random line-of-sight (UR-LoS). Both environments offer (nearly) favorable propagation. Furthermore, to analyze the UR-LoS model, we propose an urns-and-balls model. This model is simple and explains the singular value spread characteristic of the UR-LoS model well

    Non-Coherent Cooperative Communications Dispensing with Channel Estimation Relying on Erasure Insertion Aided Reed-Solomon Coded SFH M-ary FSK Subjected to Partial-Band Interference and Rayleigh Fading

    No full text
    The rationale of our design is that although much of the literature of cooperative systems assumes perfect coherent detection, the assumption of having any channel estimates at the relays imposes an unreasonable burden on the relay station. Hence, non-coherently detected Reed-Solomon (ReS) coded Slow Frequency Hopping (SFH) assisted M -ary Frequency Shift Keying (FSK) is proposed for cooperative wireless networks, subjected to both partial-band interference and Rayleigh fading. Erasure insertion (EI) assisted ReS decoding based on the joint maximum output-ratio threshold test (MO-RTT) is investigated in order to evaluate the attainable system performance. Compared to the conventional error-correction-only decoder, the EI scheme may achieve an Eb/N0 gain of approximately 3dB at the Codeword Error Probability, Pw , of 10-4 , when employing the ReS (31, 20) code combined with 32-FSK modulation. Additionally, we evaluated the system’s performance, when either equal gain combining (EGC) or selection combining (SC) techniques are employed at the destination’s receiver. The results demonstrated that in the presence of one and two assisting relays, the EGC scheme achieves gains of 1.5 dB and 1.0 dB at the Pw of 10-6 , respectively, compared to the SC arrangement. Furthermore, we demonstrated that for the same coding rate and packet size, the ReS (31, 20) code using EI decoding is capable of outperforming convolutional coding, when 32-FSK modulation is considered, whilst LDPC coding had an edge over the above two schemes

    A review of the use of information and communication technologies for dietary assessment

    Get PDF
    Presently used dietary-assessment methods often present difficulties for researchers and respondents, and misreporting errors are common. Methods using information and communication technologies (ICT) may improve quality and accuracy. The present paper presents a systematic literature review describing studies applying ICT to dietary assessment. Eligible papers published between January 1995 and February 2008 were classified into four assessment categories: computerised assessment; personal digital assistants (PDA); digital photography; smart cards. Computerised assessments comprise frequency questionnaires, 24 h recalls (24HR) and diet history assessments. Self-administered computerised assessments, which can include audio support, may reduce literacy problems, be translated and are useful for younger age groups, but less so for those unfamiliar with computers. Self-administered 24HR utilising computers yielded comparable results as standard methods, but needed supervision if used in children. Computer-assisted interviewer-administered recall results were similar to conventional recalls, and reduced inter-interviewer variability. PDA showed some advantages but did not reduce underreporting. Mobile phone meal photos did not improve PDA accuracy. Digital photography for assessing individual food intake in dining facilities was accurate for adults and children, although validity was slightly higher with direct visual observation. Smart cards in dining facilities were useful for measuring food choice but not total dietary intake. In conclusion, computerised assessments and PDA are promising, and could improve dietary assessment quality in some vulnerable groups and decrease researcher workload. Both still need comprehensive evaluation for micronutrient intake assessment. Further work is necessary for improving ICT tools in established and new methods and for their rigorous evaluatio

    Cell-Free Massive MIMO versus Small Cells

    Get PDF
    A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.Comment: EEE Transactions on Wireless Communications, accepted for publicatio

    Simple Combined Model for Nonlinear Excitations in DNA

    Full text link
    We propose a new simple model for DNA denaturation bases on the pendulum model of Englander\cite{A1} and the microscopic model of Peyrard {\it et al.},\cite{A3} so called "combined model". The main parameters of our model are: the coupling constant kk along each strand, the mean stretching yy^\ast of the hydrogen bonds, the ratio of the damping constant and driven force γ/F\gamma/F. We show that both the length LL of unpaired bases and the velocity vv of kinks depend on not only the coupling constant kk but also the temperature TT. Our results are in good agreement with previous works.Comment: 6 pages, 10 figures, submitted to Phys. Rev.

    Teaching Students Mainframe Skills for the Niche Market: An Exploratory Proposal

    Get PDF
    Contrary to the common belief, mainframe is here to stay in corporate Information Technology (IT) infrastructure. Many organizations find it more advantageous in leveraging the mainframe and are adding more workloads and exploiting new technologies. They increase the mainframe usage and leverage it to drive business value and become more successful. However, the mainframe industry faces the challenge of talent shortage because many older mainframe professionals are retiring. On the other hand, very few universities teach students mainframe skills. The high demand of mainframe jobs and the low supply of college graduates with mainframe skills present a unique opportunity for Information Systems (IS) programs to train students mainframe skills for job placement in the niche market. Therefore, we propose the idea of exploring teaching students mainframe skills in IS curriculum. Several excellent programs and resources to prepare students with mainframe skills are also reported in this paper

    Iterative soft-detection of space-time-frequency shift keying

    No full text
    Inspired by the concept of Space-Time Shift Keying (STSK), the further evolved philosophy of Space-Time-Frequency Shift Keying (STFSK) was proposed for Multiple-Input-Multiple-Output (MIMO) wireless communications, where a beneficial diversity gain may be gleaned from three different domains, namely the space-, time- and frequency-domain. In this paper we proposed soft-detected STFSK in order to conceive its iterative decoding aided version combined with channel codes. Our results showed that the STFSK soft demodulator, which iteratively exchanges extrinsic information with channel codes, may decrease the required transmit power by approximately 3 dB at the Eb/N0 of 10-5, compared to hard-decision STFSK. Furthermore, the detection complexity of both the hard- and the soft-decision STFSK demodulator is quantified in terms of the number of multiplications and additions required for each detection iteration
    corecore