11,845 research outputs found

    METCAN: The metal matrix composite analyzer

    Get PDF
    Metal matrix composites (MMC) are the subject of intensive study and are receiving serious consideration for critical structural applications in advanced aerospace systems. MMC structural analysis and design methodologies are studied. Predicting the mechanical and thermal behavior and the structural response of components fabricated from MMC requires the use of a variety of mathematical models. These models relate stresses to applied forces, stress intensities at the tips of cracks to nominal stresses, buckling resistance to applied force, or vibration response to excitation forces. The extensive research in computational mechanics methods for predicting the nonlinear behavior of MMC are described. This research has culminated in the development of the METCAN (METal Matrix Composite ANalyzer) computer code

    Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    Get PDF
    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response

    Computational simulation of high temperature metal matrix composites cyclic behavior

    Get PDF
    A procedure was developed and is described which can be used to computationally simulate the cyclic behavior of high temperature metal matrix composites (HTMMC) and its degradation effects on the structural response. This procedure consists of HTMMC mechanics coupled with a multifactor interaction constituent material relationship and with an incremental iterative nonlinear analysis. The procedure is implemented in a computer code that can be used to computationally simulate the thermomechanical behavior of HTMMC starting from the fabrication process and proceeding through thermomechanical cycling, accounting for the interface/interphase region. Results show that combined thermal/mechanical cycling, the interphase, and in situ matrix properties have significant effects on the structural integrity of HTMMC

    Reflecting on Fifty Years of Progress for Women in Science

    Get PDF
    Like young women today, 50 years ago I too assumed that gender discrimination in science was a thing of the past. Girls who grew up in America in the Sputnik era, as I did, were encouraged to become scientists. By 1964, when I graduated from college with a major in biology, I thought it entirely possible I’d win a Nobel prize. Why not? Dorothy Hodgkin won one that year. At Harvard, my professors had strongly encouraged me to go to graduate school. When I finished my postdoc in 1973, I was actively recruited to the MIT faculty. What were those feminists complaining about

    Beyond the trial: A systematic review of real-world uptake and engagement with digital self-help interventions for depression, low mood, or anxiety

    Get PDF
    Background: Digital self-help interventions (including online or computerized programs and apps) for common mental health issues have been shown to be appealing, engaging, and efficacious in randomized controlled trials. They show potential for improving access to therapy and improving population mental health. However, their use in the real world, that is, as implemented (disseminated) outside of research settings, may differ from that reported in trials, and implementation data are seldom reported. Objective: We aimed to review peer-reviewed articles reporting user uptake and/or ongoing use, retention, or completion data (hereafter ‘usage data’ or, for brevity, ‘engagement’) from implemented pure self-help (unguided) digital interventions for depression, anxiety, or the enhancement of mood. Methods: We conducted a systematic search of the Scopus, Embase, MEDLINE, and PsychINFO databases for studies reporting user uptake and/or usage data from implemented digital self-help interventions for the treatment or prevention of depression or anxiety, or the enhancement of mood, from 2002 to 2017. Additionally, we screened the reference lists of included articles, citations of these articles, and the titles of articles published in Internet Interventions, Journal of Medical Internet Research (JMIR), and JMIR Mental Health since their inception. We extracted data indicating the number of registrations or downloads and usage of interventions. Results: After the removal of duplicates, 970 papers were identified, of which ten met the inclusion criteria. Hand-searching identified one additional article. The included articles reported on seven publically available interventions. There was little consistency in the measures reported. The number of registrants or downloads ranged widely, from eight to over 40,000 per month. From 21% to 88% of users engaged in at least minimal use (e.g. used the intervention at least once or completed one module or assessment), while 7–42% engaged in moderate use (completing between 40% and 60% of modular fixed-length programs or continuing to use apps after four weeks). Indications of completion or sustained use (completion of all modules or the last assessment or continuing to use apps after six weeks or more) varied from 0.5% to 28.6%. Conclusions: Available data suggest that uptake and engagement vary widely among the handful of implemented digital self-help apps and programs which have reported this, and that usage may vary from that reported in trials. Implementation data should be routinely gathered and reported to facilitate improved uptake and engagement, arguably among the major challenges in digital health

    Metal matrix composite analyzer (METCAN) user's manual, version 4.0

    Get PDF
    The Metal Matrix Composite Analyzer (METCAN) is a computer code developed at Lewis Research Center to simulate the high temperature nonlinear behavior of metal matrix composites. An updated version of the METCAN User's Manual is presented. The manual provides the user with a step by step outline of the procedure necessary to run METCAN. The preparation of the input file is demonstrated, and the output files are explained. The sample problems are presented to highlight various features of METCAN. An overview of the geometric conventions, micromechanical unit cell, and the nonlinear constitutive relationships is also provided

    Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies

    Get PDF
    We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-redshift (z=2-4) galaxies. Our simulations cover the halo mass range Mh ~ 2x10^11 - 8.5x10^12 Msun at z=2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 A) and Si III (1207 A) emission lines are the most luminous, with C IV (1548 A) and Si IV (1394 A) also showing interesting spatially-extended structures. The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ~2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation. Spatially-extended UV metal line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI).Comment: 16 pages, 8 figures, accepted for publication in MNRA

    The Experimental Observation of a Superfluid Gyroscope in a dilute Bose Condensed Gas

    Full text link
    We have observed a superfluid gyroscope effect in a dilute gas Bose-Einstein condensate. A condensate with a vortex possesses a single quantum of angular momentum and this causes the plane of oscillation of the scissors mode to precess around the vortex line. We have measured the precession rate of the scissors oscillation. From this we deduced the angular momentum associated with the vortex line and found a value close to \hbar per particle, as predicted for a superfluid.Comment: 4 pages 5 fig

    Testing Convolutional Neural Networks for finding strong gravitational lenses in KiDS

    Get PDF
    Convolutional Neural Networks (ConvNets) are one of the most promising methods for identifying strong gravitational lens candidates in survey data. We present two ConvNet lens-finders which we have trained with a dataset composed of real galaxies from the Kilo Degree Survey (KiDS) and simulated lensed sources. One ConvNet is trained with single \textit{r}-band galaxy images, hence basing the classification mostly on the morphology. While the other ConvNet is trained on \textit{g-r-i} composite images, relying mostly on colours and morphology. We have tested the ConvNet lens-finders on a sample of 21789 Luminous Red Galaxies (LRGs) selected from KiDS and we have analyzed and compared the results with our previous ConvNet lens-finder on the same sample. The new lens-finders achieve a higher accuracy and completeness in identifying gravitational lens candidates, especially the single-band ConvNet. Our analysis indicates that this is mainly due to improved simulations of the lensed sources. In particular, the single-band ConvNet can select a sample of lens candidates with 40%\sim40\% purity, retrieving 3 out of 4 of the confirmed gravitational lenses in the LRG sample. With this particular setup and limited human intervention, it will be possible to retrieve, in future surveys such as Euclid, a sample of lenses exceeding in size the total number of currently known gravitational lenses.Comment: 16 pages, 10 figures. Accepted for publication in MNRA
    corecore