160 research outputs found

    Assessing the occurrence and transfer dynamics of ESBL/pAmpC-producing Escherichia coli across the broiler production pyramid

    Get PDF
    Extended-spectrum \u3b2-lactamase (ESBL)- and plasmid mediated AmpC-type cephalosporinase (pAmpC)-producing Escherichia coli (ESBL/pAmpC E. coli) in food-producing animals is a major public health concern. This study aimed at quantifying ESBL/pAmpC-E. coli occurrence and transfer in Italy's broiler production pyramid. Three production chains of an integrated broiler company were investigated. Cloacal swabs were taken from parent stock chickens and offspring broiler flocks in four fattening farms per chain. Carcasses from sampled broiler flocks were collected at slaughterhouse. Samples were processed on selective media, and E. coli colonies were screened for ESBL/pAmpC production. ESBL/pAmpC genes and E. coli phylogroups were determined by PCR and sequencing. Average pairwise overlap of ESBL/pAmpC E. coli gene and phylogroup occurrences between subsequent production stages was estimated using the proportional similarity index, modelling uncertainty in a Monte Carlo simulation setting. In total, 820 samples were processed, from which 513 ESBL/pAmpC E. coli isolates were obtained. We found a high prevalence (92.5%, 95%CI 72.1-98.3%) in day-old parent stock chicks, in which blaCMY-2 predominated; prevalence then dropped to 20% (12.9-29.6%) at laying phase. In fattening broilers, prevalence was 69.2% (53.6-81.3%) at the start of production, 54.2% (38.9-68.6%) at slaughter time, and 61.3% (48.1-72.9%) in carcasses. Significantly decreasing and increasing trends for respectively blaCMY-2 and blaCTX-M-1 gene occurrences were found across subsequent production stages. ESBL/pAmpC E. coli genetic background appeared complex and bla-gene/phylogroup associations indicated clonal and horizontal transmission. Modelling revealed that the average transfer of ESBL/pAmpC E. coli genes between subsequent production stages was 47.7% (42.3-53.4%). We concluded that ESBL/pAmpC E. coli in the broiler production pyramid is prevalent, with substantial transfer between subsequent production levels

    Bacterial and parasitic pathogens as risk factors for cancers in the gastrointestinal tract: a review of current epidemiological knowledge

    Get PDF
    The oncogenic potential of viral infections is well established and documented for many years already. However, the contribution of (commensal) bacteria and parasites to the development and progression of cancers has only recently gained momentum, resulting in a rapid growth of publications on the topic. Indeed, various bacteria and parasites have been suggested to play a role in the development of gastrointestinal cancer in particular. Therefore, an overview of the current epidemiological knowledge on the association between infections with bacteria and parasites and cancers of the gastrointestinal tract is needed. In this review, we summarized the methodological characteristics and main results of epidemiological studies investigating the association of 10 different bacteria (Bacteroides fragilis, Campylobacter spp., Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Porphyromonas gingivalis, non-typhoidal Salmonella, Salmonella Typhi, and Streptococcus spp.) and three parasites (Cryptosporidium spp., Schistosoma spp., and Strongyloides stercoralis) with gastrointestinal cancer. While the large body of studies based on microbiome sequencing provides valuable insights into the relative abundance of different bacterial taxa in cancer patients as compared to individuals with pre-malignant conditions or healthy controls, more research is needed to fulfill Koch's postulates, possibly making use of follow-up data, to assess the complex role of bacterial and parasitic infections in cancer epidemiology. Studies incorporating follow-up time between detection of the bacterium or parasite and cancer diagnosis remain valuable as these allow for estimation of cause-effect relationships.Chemical Immunolog

    A systematic review of the intercontinental movement of unregulated African meat imports into and through European border checkpoints

    Get PDF
    There is an urgent need for biosurveillance of unregulated African meat imports at border points of entry in destination markets. This is underscored by recent pandemics linked to exotic wildlife products. Our objective was to catalog the quantity of meat that is informally transported from Africa into and through Europe often without any veterinary or sanitary checks. We searched and included peer-reviewed studies that contained data on the intercontinental movement of unregulated meat from the African continent. This was followed by an investigation of the reported contamination of such meat. We included fifteen airport studies with limited data on this topic. The references included in this review describe the quantity of meat found at border inspection posts and the presence of pathogens. Disease-causing pathogens were found to be present, and the results are organized into bacteria, virus, and parasite categories. The species of animal meat found in this review were linked to CITES-protected species some of which are known reservoir hosts for infectious diseases. This represents a potential and unquantified human health risk to populations along the supply chain, and a loss to biodiversity in supply countries. Meat samples described in this review were primarily found opportunistically by Customs officials, indicating that any estimate of the total quantities passing undetected through border checkpoints must remain tentative, and cannot rule out the possibility that it is indeed considerably higher. We propose a template for future studies regarding African meat imports at border points of entry. The result of this review illustrates a gap in knowledge and lacunae regarding the amount of unregulated African meat imports worldwide, the pathogens it may contain, and the resulting biodiversity loss that occurs from the intercontinental movement of this meat

    A systematic review of the intercontinental movement of unregulated African meat imports into and through European border checkpoints

    Get PDF
    There is an urgent need for biosurveillance of unregulated African meat imports at border points of entry in destination markets. This is underscored by recent pandemics linked to exotic wildlife products. Our objective was to catalog the quantity of meat that is informally transported from Africa into and through Europe often without any veterinary or sanitary checks. We searched and included peer-reviewed studies that contained data on the intercontinental movement of unregulated meat from the African continent. This was followed by an investigation of the reported contamination of such meat. We included fifteen airport studies with limited data on this topic. The references included in this review describe the quantity of meat found at border inspection posts and the presence of pathogens. Disease-causing pathogens were found to be present, and the results are organized into bacteria, virus, and parasite categories. The species of animal meat found in this review were linked to CITES-protected species some of which are known reservoir hosts for infectious diseases. This represents a potential and unquantified human health risk to populations along the supply chain, and a loss to biodiversity in supply countries. Meat samples described in this review were primarily found opportunistically by Customs officials, indicating that any estimate of the total quantities passing undetected through border checkpoints must remain tentative, and cannot rule out the possibility that it is indeed considerably higher. We propose a template for future studies regarding African meat imports at border points of entry. The result of this review illustrates a gap in knowledge and lacunae regarding the amount of unregulated African meat imports worldwide, the pathogens it may contain, and the resulting biodiversity loss that occurs from the intercontinental movement of this meat

    Архітектурна спадщина Закарпаття під натиском новобуду

    Get PDF
    Multilocus sequence types (STs) were determined for 232 and 737 Campylobacter jejuni/coli isolates from Dutch travellers and domestically acquired cases, respectively. Putative risk factors for travel-related campylobacteriosis, and for domestically acquired campylobacteriosis caused by exotic STs (putatively carried by returning travellers), were investigated. Travelling to Asia, Africa, Latin America and the Caribbean, and Southern Europe significantly increased the risk of acquiring campylobacteriosis compared to travelling within Western Europe. Besides eating chicken, using antacids, and having chronic enteropathies, we identified eating vegetable salad outside Europe, drinking bottled water in high-risk destinations, and handling/eating undercooked pork as possible risk factors for travel-related campylobacteriosis. Factors associated with domestically acquired campylobacteriosis caused by exotic STs involved predominantly person-to-person contacts around popular holiday periods. We concluded that putative determinants of travel-related campylobacteriosis differ from those of domestically acquired infections and that returning travellers may carry several exotic strains that might subsequently spread to domestic populations even through limited person-to-person transmission

    Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition

    Get PDF
    The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs

    Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition

    Get PDF
    The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks ( n  = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia -Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs
    corecore