68 research outputs found
Radiative and leptonic decays at NLO
We present the differential rates and branching ratios of the radiative
decays , with or , and in the Standard Model at next-to-leading order. Radiative
corrections are computed taking into account the full depencence on the mass
of the final charged leptons, which is necessary for the correct
determination of the branching ratios. Only partial agreement is found with
previous calculations performed in the limit. Our results agree
with the measurements of the branching ratios and for a
minimum photon energy of 10 MeV in the and rest frames,
respectively. Babar's recent precise measurement of the branching ratio
, for the same photon energy
threshold, differs from our prediction by 3.5 standard deviations.Comment: 13 pages, 1 figure, results included as ancillary file
W-propagator corrections to muon and tau leptonic decays
We derive the corrections induced by the W-boson propagator to the
differential rates of the leptonic decay of a polarized muon and tau lepton.
Results are presented both for decays inclusive of inner bremsstrahlung as well
as for radiative ones, when a photon emitted in the decay process is measured.
The numerical effect of these corrections is discussed. The definition of the
Fermi constant is briefly reviewed.Comment: 5 pages, no figures, accepted for publicatio
On The Potential of Minimal Flavour Violation
Assuming the Minimal Flavour Violation hypothesis, we derive the general
scalar potential for fields whose background values are the Yukawa couplings.
We analyze the minimum of the potential and discuss the fine-tuning required to
dynamically generate the mass hierarchies and the mixings between different
quark generations. Two main cases are considered, corresponding to Yukawa
interactions being effective operators of dimension five or six (or,
equivalently, resulting from bi-fundamental and fundamental scalar fields,
respectively). At the renormalizable and classical level, no mixing is
naturally induced from dimension five Yukawa operators. On the contrary, from
dimension six Yukawa operators one mixing angle and a strong mass hierarchy
among the generations result.Comment: 33 pages, 6 figures; Note added in proof on the stability of the
minima of the scalar potential; results unchanged; references adde
CP Violation in Supersymmetry with Effective Minimal Flavour Violation
We analyze CP violation in supersymmetry with Effective Minimal Flavour
Violation, as recently proposed in arXiv:1011.0730. Unlike the case of standard
Minimal Flavour Violation, we show that all the phases allowed by the flavour
symmetry can be sizable without violating existing Electric Dipole Moment
constraints, thus solving the SUSY CP problem. The EDMs at one and two loops
are precisely analyzed as well as their correlations with the expected CP
asymmetries in B physics.Comment: 22 pages, 7 figures. v2: Discussion in section 2 extended,
conclusions unchanged. Matches published versio
A Geometric Approach to CP Violation: Applications to the MCPMFV SUSY Model
We analyze the constraints imposed by experimental upper limits on electric
dipole moments (EDMs) within the Maximally CP- and Minimally Flavour-Violating
(MCPMFV) version of the MSSM. Since the MCPMFV scenario has 6 non-standard
CP-violating phases, in addition to the CP-odd QCD vacuum phase \theta_QCD,
cancellations may occur among the CP-violating contributions to the three
measured EDMs, those of the Thallium, neutron and Mercury, leaving open the
possibility of relatively large values of the other CP-violating observables.
We develop a novel geometric method that uses the small-phase approximation as
a starting point, takes the existing EDM constraints into account, and enables
us to find maximal values of other CP-violating observables, such as the EDMs
of the Deuteron and muon, the CP-violating asymmetry in b --> s \gamma decay,
and the B_s mixing phase. We apply this geometric method to provide upper
limits on these observables within specific benchmark supersymmetric scenarios,
including extensions that allow for a non-zero \theta_QCD.Comment: 34 pages, 16 eps figures, to appear in JHE
Covariant Description of Flavor Conversion in the LHC Era
A simple covariant formalism to describe flavor and CP violation in the
left-handed quark sector in a model independent way is provided. The
introduction of a covariant basis, which makes the standard model approximate
symmetry structure manifest, leads to a physical and transparent picture of
flavor conversion processes. Our method is particularly useful to derive robust
bounds on models with arbitrary mechanisms of alignment. Known constraints on
flavor violation in the K and D systems are reproduced in a straightforward
manner. Assumptions-free limits, based on top flavor violation at the LHC, are
then obtained. In the absence of signal, with 100 fb^{-1} of data, the LHC will
exclude weakly coupled (strongly coupled) new physics up to a scale of 0.6 TeV
(7.6 TeV), while at present no general constraint can be set related to Delta
t=1 processes. LHC data will constrain Delta F=2 contributions via same-sign
tops signal, with a model independent exclusion region of 0.08 TeV (1.0 TeV).
However, in this case, stronger bounds are found from the study of CP violation
in D-bar D mixing with a scale of 0.57 TeV (7.2 TeV). In addition, we apply our
analysis to models of supersymmetry and warped extra dimension. The minimal
flavor violation framework is also discussed, where the formalism allows to
distinguish between the linear and generic non-linear limits within this class
of models.Comment: 24 pages, 6 figures. Some corrections and clarifications; references
added. Matches published versio
Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation
We compare the effectiveness of two hypotheses, Natural Flavour Conservation
(NFC) and Minimal Flavour Violation (MFV), in suppressing the strength of
flavour-changing neutral-currents (FCNCs) in models with more than one Higgs
doublet. We show that the MFV hypothesis, in its general formulation, is more
stable in suppressing FCNCs than the hypothesis of NFC alone when quantum
corrections are taken into account. The phenomenological implications of the
two scenarios are discussed analysing meson-antimeson mixing observables and
the rare decays B -> mu+ mu-. We demonstrate that, introducing flavour-blind CP
phases, two-Higgs doublet models respecting the MFV hypothesis can accommodate
a large CP-violating phase in Bs mixing, as hinted by CDF and D0 data and,
without extra free parameters, soften significantly in a correlated manner the
observed anomaly in the relation between epsilon_K and S_psi_K.Comment: 27 pages, 4 figures. v3: minor modifications (typos corrected and few
refs. added), conclusions unchanged; journal versio
CP violation in sbottom decays
We study CP asymmetries in two-body decays of bottom squarks into charginos
and tops. These asymmetries probe the SUSY CP phases of the sbottom and the
chargino sector in the Minimal Supersymmetric Standard Model. We identify the
MSSM parameter space where the CP asymmetries are sizeable, and analyze the
feasibility of their observation at the LHC. As a result, potentially
detectable CP asymmetries in sbottom decays are found, which motivates further
detailed experimental studies for probing the SUSY CP phases.Comment: 29 pages, 7 figure
- …