131 research outputs found

    First results with the {ANET} Compact Thermal Neutron Collimator

    Get PDF
    This paper presents the first determination of the spatial resolution of the ANET Compact Neutron Collimator, obtained with a measuring campaign at the LENA Mark-II TRIGA reactor in Pavia. This novel collimator consists of a sequence of collimating and absorbing channels organised in a chessboard-like geometry. It has a scalable structure both in length and in the field of view. It is characterized by an elevated collimation power within a limited length. Its scalability and compactness are added values with respect to traditional collimating system. The prototype tested in this article is composed of 4 concatenated stages, each 100mm long, with a channel width of 2.5mm, delivering a nominal L/D factor of 160. This measuring campaign illustrates the use of the ANET collimator and its potential application in neutron imaging for facilities with small or medium size neutron sources.Comment: 9 pages, 8 figures, prepared for submission to JINS

    Design of a novel compact neutron collimator

    Get PDF
    In this work the concept of a novel slow neutron collimator and the way to operate it are presented. The idea is based on the possibility to decouple the device field-of-view from its collimation power. A multi-channel geometry is proposed consisting of a chess-board structure where highly neutron-absorbing channels are alternated to air channels. A borated polymer was purposely developed to produce the attenuating components in the form of square-sectioned long rods. A scalable structure consisting of multiple collimation sectors can be arranged. The geometrical parameter LD, corresponding to the ratio between the length of a channel and its width, defines the collimation power. Several sectors can be arranged one after the other to reach relevant collimation powers. Each sector, 100 mm long, is composed by several channels with D = 2.5 mm corresponding to an L/D coefficient of 40. The target field of view is 50x50 mm2. This novel collimator, developed inside the INFN-ANET collaboration, due to its intrinsic compactness, will be of great importance to enhance the neutron imaging capability of small to medium-size neutron sources.Comment: 8 pages, 5 figures, accepted for publication to JINS

    Development of gamma insensitive silicon carbide diagnostics to qualify intense thermal and epithermal neutron fields

    Full text link
    The e_LiBANS project aims at creating accelerator based compact neutron facilities for diverse interdisciplinary applications. After the successful setting up and characterization of a thermal neutron source based on a medical electron LINAC, a similar assembly for epithermal neutrons has been developed. The project is based on an Elekta 18 MV LINAC coupled with a photoconverter-moderator system which deploys the ({\gamma},n) photonuclear reaction to convert a bremsstrahlung photon beam into a neutron field. This communication describes the development of novel diagnostics to qualify the thermal and epithermal neutron fields that have been produced. In particular, a proof of concept for the use of silicon carbide photodiodes as a thermal neutron rate detector is presented.Comment: 10 pages, 10 figures, accepted for publication to JINST on the 17th April 202

    On some aspects of the geometry of differential equations in physics

    Full text link
    In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study of the differential equations with which they are related. Furthermore, research to be developed in these areas is also commented.Comment: 21 page

    A new Low Gain Avalanche Diode concept: the double-LGAD

    Full text link
    This paper describes the new concept of the double-LGAD. The goal is to increase the charge at the input of the electronics, keeping a time resolution equal or better than a standard (single) LGAD; this has been realized by adding the charges of two coupled LGADs while still using a single front-end electronics. The study here reported has been done starting from single LGAD with a thickness of 25 \textmu{m}, 35 \textmu{m} and 50 \textmu{m}.Comment: arXiv admin note: text overlap with arXiv:2208.0571

    The Tulczyjew triple for classical fields

    Full text link
    The geometrical structure known as the Tulczyjew triple has proved to be very useful in describing mechanical systems, even those with singular Lagrangians or subject to constraints. Starting from basic concepts of variational calculus, we construct the Tulczyjew triple for first-order Field Theory. The important feature of our approach is that we do not postulate {\it ad hoc} the ingredients of the theory, but obtain them as unavoidable consequences of the variational calculus. This picture of Field Theory is covariant and complete, containing not only the Lagrangian formalism and Euler-Lagrange equations but also the phase space, the phase dynamics and the Hamiltonian formalism. Since the configuration space turns out to be an affine bundle, we have to use affine geometry, in particular the notion of the affine duality. In our formulation, the two maps α\alpha and ÎČ\beta which constitute the Tulczyjew triple are morphisms of double structures of affine-vector bundles. We discuss also the Legendre transformation, i.e. the transition between the Lagrangian and the Hamiltonian formulation of the first-order field theor

    The second production of RSD (AC-LGAD) at FBK

    Full text link
    In this contribution we describe the second run of RSD (Resistive AC-Coupled Silicon Detectors) designed at INFN Torino and produced by Fondazione Bruno Kessler (FBK), Trento. RSD are n-in-p detectors intended for 4D particle tracking based on the LGAD technology that get rid of any segmentation implant in order to achieve the 100% fill-factor. They are characterized by three key-elements, (i) a continuous gain implant, (ii) a resistive n-cathode and (iii) a dielectric coupling layer deposited on top, guaranteeing a good spatial reconstruction of the hit position while benefiting from the good timing properties of LGADs. We will start from the very promising results of our RSD1 batch in terms of tracking performances and then we will move to the description of the design of the RSD2 run. In particular, the principles driving the sensor design and the specific AC-electrode layout adopted to optimize the signal confinement will be addressed

    High-Precision 4D Tracking with Large Pixels using Thin Resistive Silicon Detectors

    Full text link
    The basic principle of operation of silicon sensors with resistive read-out is built-in charge sharing. Resistive Silicon Detectors (RSD, also known as AC-LGAD), exploiting the signals seen on the electrodes surrounding the impact point, achieve excellent space and time resolutions even with very large pixels. In this paper, a TCT system using a 1064 nm picosecond laser is used to characterize sensors from the second RSD production at the Fondazione Bruno Kessler. The paper first introduces the parametrization of the errors in the determination of the position and time coordinates in RSD, then outlines the reconstruction method, and finally presents the results. Three different pixel sizes are used in the analysis: 200 x 340, 450 x 450, and 1300 x 1300 microns^2. At gain = 30, the 450 x 450 microns^2 pixel achieves a time jitter of 20 ps and a spatial resolution of 15 microns concurrently, while the 1300 x 1300 microns^2 pixel achieves 30 ps and 30 micron, respectively. The implementation of cross-shaped electrodes improves considerably the response uniformity over the pixel surface.Comment: 28 pages, 23 figures submitted to NIM
    • 

    corecore