Abstract

In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study of the differential equations with which they are related. Furthermore, research to be developed in these areas is also commented.Comment: 21 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019