In this review paper, we consider three kinds of systems of differential
equations, which are relevant in physics, control theory and other applications
in engineering and applied mathematics; namely: Hamilton equations, singular
differential equations, and partial differential equations in field theories.
The geometric structures underlying these systems are presented and commented.
The main results concerning these structures are stated and discussed, as well
as their influence on the study of the differential equations with which they
are related. Furthermore, research to be developed in these areas is also
commented.Comment: 21 page