The geometrical structure known as the Tulczyjew triple has proved to be very
useful in describing mechanical systems, even those with singular Lagrangians
or subject to constraints. Starting from basic concepts of variational
calculus, we construct the Tulczyjew triple for first-order Field Theory. The
important feature of our approach is that we do not postulate {\it ad hoc} the
ingredients of the theory, but obtain them as unavoidable consequences of the
variational calculus. This picture of Field Theory is covariant and complete,
containing not only the Lagrangian formalism and Euler-Lagrange equations but
also the phase space, the phase dynamics and the Hamiltonian formalism. Since
the configuration space turns out to be an affine bundle, we have to use affine
geometry, in particular the notion of the affine duality. In our formulation,
the two maps α and β which constitute the Tulczyjew triple are
morphisms of double structures of affine-vector bundles. We discuss also the
Legendre transformation, i.e. the transition between the Lagrangian and the
Hamiltonian formulation of the first-order field theor