412 research outputs found

    Sterilization of lung matrices by supercritical carbon dioxide

    Get PDF
    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO(2)) that can achieve a sterility assurance level 10(−6) in decellularized lung matrix. The effects of ScCO(2) treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO(2) did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO(2), indicating that ScCO(2) produces a matrix that is stable during storage. The current study's results indicate that ScCO(2) can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes

    Layerless fabrication with continuous liquid interface production

    Get PDF
    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology

    The Association of qSOFA, SOFA, and SIRS with Mortality in Emergency Department Pneumonia

    Get PDF
    Objective: To determine the association between 30-day mortality with Systemic Inflammatory Response Syndrome (SIRS), Sequential Organ Failure Assessment (SOFA), and quick SOFA (qSOFA) in emergency department patients with pneumonia. Secondary outcomes included the association of sepsis scores with hospital admission and direct ICU admission. Methods: This is a secondary analysis of a pneumonia population conducted in the emergency department of 3 tertiary care medical centers and 4 community hospitals. Adult immunocompetent patients diagnosed with pneumonia were included from 3 twelve-month periods spanning December 2009 to October 2015. We generated area under the receiver operating characteristic curve (AUC) values for each sepsis score for our primary outcome of 30-day mortality and secondarily for hospital admission and direct ICU admission. We also created logistic regression models to assess associations of individual score components to the outcomes. Results:We studied 6931 patients with mean (SD) age 58 (20) years, and 30 day all-cause mortality rate 7%. Hospital and ICU admission rate was 63% and 16% respectively. Sepsis by SIRS was present in 70% of patients. Only respiratory rate and white blood count of the SIRS criteria were associated with 30-day mortality (OR=2.42 [1.94, 3.03] and 2.06 [1.68, 2.54] respectively, both p Conclusions: In emergency department patients with pneumonia, qSOFA outperformed SIRS in relation to 30-day mortality. Secondary outcomes also showed better performance of qSOFA in hospital and ICU admission compared to SIRS. SOFA performed better than qSOFA and SIRS for all outcomes except ICU admission

    Organic Polymer Chemistry in the Context of Novel Processes

    Get PDF
    This article was written to shed light on a series of what some have stated are not so obvious connections that link polymer synthesis in supercritical CO2 to cancer treatment and vaccines, nonflammable polymer electrolytes for lithium ion batteries, and 3D printing. In telling this story, we also attempt to show the value of versatility in applying one's primary area of expertise to address pertinent questions in science and in society. In this Outlook, we attempted to identify key factors to enable a versatile and nimble research effort to take shape in an effort to influence diverse fields and have a tangible impact in the private sector through the translation of discoveries into the marketplace

    Developing a Plan for a More Diverse, Inclusive, and Equitable Library at a Research 1 Land-Grant University

    Get PDF
    Using the Virginia Tech strategic plan as a guide, a team of its University Libraries faculty and staff designed a strategic planning approach for the library that directly engaged with University goals and explored two areas: 1) contributing to the equity-, diversity-, and inclusion-related (EDI) goals laid out in the University strategic plan, and 2) expanding upon efforts to broaden diversity and representation in the library. The team identified four major themes: accessibility, climate, employment and professional development, outreach, and advocacy, and used these themes to develop specific recommendations. The process served to shine the light on these topics within the library, allowing for reflection and self-understanding, crucial components to change and grow with more attention to inclusion and diversity. Recognizing a need for change, it is hoped the report leads to better advocacy and ally-ship and brings issues to light for other libraries engaging in similar processes

    Early aberrant angiogenesis due to elastic fiber fragmentation in aortic valve disease

    Get PDF
    Elastic fiber fragmentation (EFF) is a hallmark of aortic valve disease (AVD), and neovascularization has been identified as a late finding related to inflammation. We sought to characterize the relationship between early EFF and aberrant angiogenesis. To examine disease progression, regional anatomy and pathology of aortic valve tissue were assessed using histochemistry, immunohistochemistry, and electron microscopy from early-onset (\u3c40 yo) and late-onset (≥40 yo) non-syndromic AVD specimens. To assess the effects of EFF on early AVD processes, valve tissue from Williams and Marfan syndrome patients was also analyzed. Bicuspid aortic valve was more common in early-onset AVD, and cardiovascular comorbidities were more common in late-onset AVD. Early-onset AVD specimens demonstrated angiogenesis without inflammation or atherosclerosis. A distinct pattern of elastic fiber components surrounded early-onset AVD neovessels, including increased emilin-1 and decreased fibulin-5. Different types of EFF were present in Williams syndrome (WS) and Marfan syndrome (MFS) aortic valves; WS but not MFS aortic valves demonstrated angiogenesis. Aberrant angiogenesis occurs in early-onset AVD in the absence of inflammation, implicating EFF. Elucidation of underlying mechanisms may inform the development of new pharmacologic treatments

    Differential Expression of Extracellular Matrix-Mediated Pathways in Single-Suture Craniosynostosis

    Get PDF
    Craniosynostosis is a disease defined by premature fusion of one or more cranial sutures. The mechanistic pathology of single-suture craniosynostosis is complex and while a number of genetic biomarkers and environmental predispositions have been identified, in many cases the causes remain controversial and inconclusive. In this study, gene expression data from 199 patients with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) synostosis are compared against both a control population (n = 50), as well as each other. After controlling for variables contributing to potential bias, FGF7, SFRP4, and VCAM1 emerged as genes associated with single-suture craniosynostosis due to their significantly large changes in gene expression compared to the control population. Pathway analysis implicated focal adhesion and extracellular matrix (ECM)-receptor interaction as differentially regulated gene networks when comparing all cases of single-suture synostosis and controls. Lastly, overall gene expression was found to be highly conserved between coronal and metopic cases, as evidenced by the fact that WNT2 and IGFBP2 were the only genes differentially regulated to a significantly large extent in a direct comparison. The identification of genes and gene networks associated with Fgf/Igf/Wnt signaling and ECM-mediated focal adhesion not only support the involvement of biomarkers previously reported to be related to craniosynostosis, but also introduce novel transcripts and pathways that may play critical roles in its pathogenesis
    • …
    corecore