11 research outputs found

    The roles for innate lymphoid cells in the human immune system

    No full text
    From constituting a novel and obscure cell population, innate lymphoid cells (ILCs) are now accepted as a self-evident part of the immune system, contributing with unique and complementary functions to immunity by production of effector cytokines and interaction with other cell types. In this review, we discuss the redundant and complementary roles of the highly plastic human ILCs and their interaction with other immune cells with the ultimate aim of placing ILCs in a wider context within the human immune system.Funding Agencies|Stiftelsen forStrategisk Forskning [FFL15-0120]; Svenska Sallskapet for Medicinsk Forskning [4-140/2014]; Vetenskapsradet [521-2013-2791]; Knut och Alice Wallenbergs Stiftelse [4-1198/2016]; Cancerfonden [170082, 160664]</p

    Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model

    No full text
    Numerical human models for electromagnetic dosimetry are commonly obtained by segmentation of CT or MRI images and complex permittivity values are ascribed to each issue according to literature values. The aim of this study is to provide an alternative semi-automatic method by which non segmented images, obtained by a MRI tomographer, can be automatically related to the complex permittivity values through two frequency dependent transfer functions. In this way permittivity and conductivity vary with continuity — even in the same tissue — reflecting the intrinsic realistic spatial dispersion of such parameters. A female human model impinged by a plane wave is tested by using an FDTD algorithm, and the results of the total body and layer averaged SAR are reporte

    The preventive health professions in Italy. The efficient use of resources, skills and best practice during the pandemic

    No full text
    Health visitors (HVs) and environmental health officers (EHOs) are the healthcare workers (HCWs) who, in the Italian National Health Service, mainly operate in the prevention departments of local health authorities, guaranteeing the territorial activities specifically declared with the respective professional profiles. During the SARS-CoV-2 pandemic, it was necessary to reallocate all HCWs supporting Hygiene and Public Health Services involved on the front lines of the emergency, in order to perform preventive activities and to take immediate action to fight the spread of the virus. By means of an IT survey consisting of three sections, this study investigated how 960 HVs and EHOs dealt with this reallocation, with the shifting in service assignment, and with the perceived level of fatigue and pressure, through the application of skills acquired from university training. The synergy among the preventive health professions, the ability to work in a multi-professional team, and the complementary training of HCWs represent the main strengths for overcoming future public health challenges, aimed at protecting human health

    Plasticity of innate lymphoid cell subsets

    No full text
    Innate lymphoid cells (ILCs) are important for tissue homeostasis and for the initiation of immune responses. Based on their transcriptional regulation and cytokine profiles, ILCs can be categorized into five subsets with defined phenotypes and functional profiles, but they also have the ability to adapt to local environmental cues by changing these profiles. This plasticity raises the question of the extent to which the cytokine production profiles of ILCs are pre-programmed or are a reflection of the tissue microenvironment. Here, we review recent advances in research on ILCs, with a focus on the plasticity of these cells. We highlight the ability of ILCs to communicate with the surrounding microenvironment and discuss the possible consequences of ILC plasticity for our understanding of the biological roles of these cells. Finally, we discuss how we might use this knowledge of ILC plasticity to develop or improve options for the treatment of inflammatory diseases

    Simulation techniques in hyperthermia treatment planning

    No full text
    Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44°C, significantly enhance radiotherapy and chemotherapy effectiveness (1). Driven by the developments in computational techniques and computing power, personalized hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimizing treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical setups are now being performed to achieve patient-specific treatment optimization. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from “model” to “clinic”. In addition, we illustrate the major techniques employed for validation and optimization. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer
    corecore