145 research outputs found

    Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation

    Get PDF
    Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels

    Relative Reactivity of the Metal-Amido versus Metal-Imido Bond in Linked Cp-Amido and Half-Sandwich Complexes of Vanadium

    Get PDF
    Treatment of (η5-C5H4C2H4NR)V(N-t-Bu)Me (R = Me, i-Pr) and CpV(N-p-Tol)(N-i-Pr2)Me (Cp = η5-C5H5) with B(C6F5)3 or [Ph3C][B(C6F5)4] results in formation of the corresponding cations, [(η5-C5H4C2H4NR)V(N-t-Bu)]+ and [CpV(N-p-Tol)(N-i-Pr2)]+. The latter could also be generated as its N,N-dimethylaniline adduct by treatment of the methyl complex with [PhNMe2H][BAr4] (Ar = Ph, C6F5). Instead, the analogous reaction with the linked Cp-amido precursor results in protonation of the imido-nitrogen atom. Sequential cyclometalation of the amide substituents gave cationic imine complexes [(η5-C5H4C2H4NCR'2)V(NH-t-Bu)]+ (R' = H, Me) and methane. Reaction of cationic [(η5-C5H4C2H4NR)V(N-t-Bu)]+ with olefins affords the corresponding olefin adducts, whereas treatment with 1 or 2 equiv of 2-butyne results in insertion of the alkyne into the vanadium-nitrogen single bond, affording the mono- and bis-insertion products [(η5-C5H4C2H4N(i-Pr)C2Me2)V(N-t-Bu)]+ and [(η5-C5H4C2H4N(i-Pr)C4Me4)V(N-t-Bu)]+. The same reaction with the half-sandwich compound [CpV(N-p-Tol)(N-i-Pr2)]+ results in a paramagnetic compound that, upon alcoholysis, affords sec-butylidene-p-tolylamine, suggesting an initial [2+2] cycloaddition reaction. The difference in reactivity between the V-N bond versus the V=N bond was further studied using computational methods. Results were compared to the isoelectronic titanium system CpTi(NH)(NH2). These studies indicate that the kinetic product in each system is derived from a [2+2] cycloaddition reaction. For titanium, this was found as the thermodynamic product as well, whereas the insertion reaction was found to be thermodynamically more favorable in the case of vanadium.

    Differences between Human Plasma and Serum Metabolite Profiles

    Get PDF
    BACKGROUND: Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. CONCLUSIONS/SIGNIFICANCE: Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection

    Semiautomated Device for Batch Extraction of Metabolites from Tissue Samples

    Get PDF
    ABSTRACT: Metabolomics has become a mainstream analytical strategy for investigating metabolism. The quality of data derived from these studies is proportional to the consistency of the sample preparation. Although considerable research has been devoted to finding optimal extraction protocols, most of the established methods require extensive sample handling. Manual sample preparation can be highly effective in the hands of skilled technicians, but an automated tool for purifying metabolites from complex biological tissues would be of obvious utility to the field. Here, we introduce the semiautomated metabolite batch extraction device (SAMBED), a new tool designed to simplify metabolomics sample preparation. We discuss SAMBED’s design and show that SAMBED-based extractions are of comparable quality to extracts produced through traditional methods (13 % mean coefficient of variation from SAMBED versus 16 % from manual extractions). Moreover, we show that aqueous SAMBED-based methods ca

    MicroRNA Transcriptomic Analysis of Heterosis during Maize Seed Germination

    Get PDF
    Heterosis has been utilized widely in the breeding of maize and other crops, and plays an important role in increasing yield, improving quality and enhancing stresses resistance, but the molecular mechanism responsible for heterosis is far from clear. To illustrate whether miRNA-dependent gene regulation is responsible for heterosis during maize germination, a deep-sequencing technique was applied to germinating embryos of a maize hybrid, Yuyu22, which is cultivated widely in China and its parental inbred lines, Yu87-1 and Zong3. The target genes of several miRNAs showing significant expression in the hybrid and parental lines were predicted and tested using real-time PCR. A total of 107 conserved maize miRNAs were co-detected in the hybrid and parental lines. Most of these miRNAs were expressed non-additively in the hybrid compared to its parental lines. These results indicated that miRNAs might participate in heterosis during maize germination and exert an influence via the decay of their target genes. Novel miRNAs were predicted follow a rigorous criterion and only the miRNAs detected in all three samples were treated as a novel maize miRNA. In total, 34 miRNAs belonged to 20 miRNA families were predicted in germinating maize seeds. Global repression of miRNAs in the hybrid, which might result in enhanced gene expression, might be one reason why the hybrid showed higher embryo germination vigor compared to its parental lines

    Metabolites of milk intake: a metabolomic approach in UK twins with findings replicated in two European cohorts

    Get PDF
    Purpose: Milk provides a significant source of calcium, protein, vitamins and other minerals to Western populations throughout life. Due to its widespread use, the metabolic and health impact of milk consumption warrants further investigation and biomarkers would aid epidemiological studies.  Methods: Milk intake assessed by a validated food frequency questionnaire was analyzed against fasting blood metabolomic profiles from two metabolomic platforms in females from the TwinsUK cohort (n = 3559). The top metabolites were then replicated in two independent populations (EGCUT, n = 1109 and KORA, n = 1593), and the results from all cohorts were meta-analyzed.  Results: Four metabolites were significantly associated with milk intake in the TwinsUK cohort after adjustment for multiple testing (P < 8.08 × 10−5) and covariates (BMI, age, batch effects, family relatedness and dietary covariates) and replicated in the independent cohorts. Among the metabolites identified, the carnitine metabolite trimethyl-N-aminovalerate (β = 0.012, SE = 0.002, P = 2.98 × 10−12) and the nucleotide uridine (β = 0.004, SE = 0.001, P = 9.86 × 10−6) were the strongest novel predictive biomarkers from the non-targeted platform. Notably, the association between trimethyl-N-aminovalerate and milk intake was significant in a group of MZ twins discordant for milk intake (β = 0.050, SE = 0.015, P = 7.53 × 10−4) and validated in the urine of 236 UK twins (β = 0.091, SE = 0.032, P = 0.004). Two metabolites from the targeted platform, hydroxysphingomyelin C14:1 (β = 0.034, SE = 0.005, P = 9.75 × 10−14) and diacylphosphatidylcholine C28:1 (β = 0.034, SE = 0.004, P = 4.53 × 10−16), were also replicated.  Conclusions: We identified and replicated in independent populations four novel biomarkers of milk intake: trimethyl-N-aminovalerate, uridine, hydroxysphingomyelin C14:1 and diacylphosphatidylcholine C28:1. Together, these metabolites have potential to objectively examine and refine milk-disease associations

    A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection

    Get PDF
    We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p<2.8×10−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects

    A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection

    Get PDF
    We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p<2.8×10−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects
    • …
    corecore