69 research outputs found

    Recycling alginate composites for thermal insulation

    Get PDF
    We present a new method for the total functional recycling of alginate-based composite materials made via ionotropic gelation. The original material, an alginate/fiberglass foam with thermal insulation characteristics, was produced following a patented process in which fiberglass waste is embedded into the polyanionic gel matrix, and the resulting compound is then freeze-dried. The functional recycling is carried out by disassembling the ionic matrix \u2013 which is initially formed by the interaction between a cation (e.g. calcium) and the negatively charged alginate backbone \u2013 with the use of a chelator (Ethylenediaminetetraacetic acid disodium salt) with a high affinity for the cations, thus obtaining a homogeneous solution. An ionotropic gel can then be re-formed upon deactivation of the chelating activity under mild acid conditions. We managed to maintain or improve the thermal, mechanical and acoustic performances of the original material and we successfully tested the possibility of multiple recycling cycles

    Comparison of three different application routes of butyrate to improve colonic anastomotic strength in rats

    Get PDF
    Despite extensive research, anastomotic leakage (AL) remains one of the most dreaded complications after colorectal surgery. Since butyrate enemas are known to enhance anastomotic healing, several administration routes have been explored in this study. Three intraluminal approaches involving butyrate were investigated: (1) butyrin-elucidating patch, (2) a single injection of hyaluronan-butyrate (HA-But) prior to construction of the proximal anastomosis and (3) rectal hyaluronan-butyrate (HA-But) enemas designed for distal anastomoses. The main outcome was AL and secondary outcomes were bursting pressure, histological analysis of the anastomosis, zymography to detect MMP activity and qPCR for gene expression of MMP2, MMP9, MUC2 and TFF3. RESULTS: Neither the patches nor the injections led to a reduction of AL in experiments 1 and 2. In experiment 3, a significant reduction of AL was accomplished with the (HA-But) enema compared to the control group together with a higher bursting pressure. Histological analysis detected only an increased inflammation in experiment 2 in the hyaluronan injection group compared to the control group. No other differences were found regarding wound healing. Zymography identified a decreased proenzyme of MMP9 when HA-But was administered as a rectal enema. qPCR did not show any significant differences between groups in any experiment. CONCLUSION: Butyrate enemas are effective in the enhancement of colonic anastomosis. Enhanced butyrate-based approaches designed to reduce AL in animal models for both proximal and distal anastomoses were not more effective than were butyrate enemas alone. Further research should focus on how exogenous butyrate can improve anastomotic healing after gastrointestinal surgery

    Enhanced bioadhesivity of dopamine-functionalized polysaccharidic membranes for general surgery applications

    Get PDF
    An emerging strategy to improve adhesiveness of biomaterials in wet conditions takes inspiration from the adhesive features of marine mussel, which reside in the chemical reactivity of catechols. In this work, a catechol-bearing molecule (dopamine) was chemically grafted onto alginate to develop a polysaccharide-based membrane with improved adhesive properties. The dopamine-modified alginates were characterized by NMR, UV spectroscopy and in vitro biocompatibility. Mechanical tests and in vitro adhesion studies pointed out the effects of the grafted dopamine within the membranes. The release of HA from these resorbable membranes was shown to stimulate fibroblasts activities (in vitro). Finally, a preliminary in vivo test was performed to evaluate the adhesiveness of the membrane on porcine intestine (serosa). Overall, this functionalized membrane was shown to be biocompatible and to possess considerable adhesive properties owing to the presence of dopamine residues grafted on the alginate backbone

    A Seriation Approach for Visualization-Driven Discovery of Co-Expression Patterns in Serial Analysis of Gene Expression (SAGE) Data

    Get PDF
    Background: Serial Analysis of Gene Expression (SAGE) is a DNA sequencing-based method for large-scale gene expression profiling that provides an alternative to microarray analysis. Most analyses of SAGE data aimed at identifying co-expressed genes have been accomplished using various versions of clustering approaches that often result in a number of false positives. Principal Findings: Here we explore the use of seriation, a statistical approach for ordering sets of objects based on their similarity, for large-scale expression pattern discovery in SAGE data. For this specific task we implement a seriation heuristic we term ‘progressive construction of contigs ’ that constructs local chains of related elements by sequentially rearranging margins of the correlation matrix. We apply the heuristic to the analysis of simulated and experimental SAGE data and compare our results to those obtained with a clustering algorithm developed specifically for SAGE data. We show using simulations that the performance of seriation compares favorably to that of the clustering algorithm on noisy SAGE data. Conclusions: We explore the use of a seriation approach for visualization-based pattern discovery in SAGE data. Using both simulations and experimental data, we demonstrate that seriation is able to identify groups of co-expressed genes more accurately than a clustering algorithm developed specifically for SAGE data. Our results suggest that seriation is a usefu

    Intramolecular Folding in Human ILPR Fragment with Three C-Rich Repeats

    Get PDF
    Enrichment of four tandem repeats of guanine (G) rich and cytosine (C) rich sequences in functionally important regions of human genome forebodes the biological implications of four-stranded DNA structures, such as G-quadruplex and i-motif, that can form in these sequences. However, there have been few reports on the intramolecular formation of non-B DNA structures in less than four tandem repeats of G or C rich sequences. Here, using mechanical unfolding at the single-molecule level, electrophoretic mobility shift assay (EMSA), circular dichroism (CD), and ultraviolet (UV) spectroscopy, we report an intramolecularly folded non-B DNA structure in three tandem cytosine rich repeats, 5'-TGTC4ACAC4TGTC4ACA (ILPR-I3), in the human insulin linked polymorphic region (ILPR). The thermal denaturation analyses of the sequences with systematic C to T mutations have suggested that the structure is linchpinned by a stack of hemiprotonated cytosine pairs between two terminal C4 tracts. Mechanical unfolding and Br2 footprinting experiments on a mixture of the ILPR-I3 and a 5′-C4TGT fragment have further indicated that the structure serves as a building block for intermolecular i-motif formation. The existence of such a conformation under acidic or neutral pH complies with the strand-by-strand folding pathway of ILPR i-motif structures

    Defining the Earliest Transcriptional Steps of Chondrogenic Progenitor Specification during the Formation of the Digits in the Embryonic Limb

    Get PDF
    The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a Tgfβ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo

    WIDESPREAD PRESENCE IN MAMMALS AND HIGH BINDING SPECIFICITY OF A NUCLEAR PROTEIN THAT RECOGNIZES THE SINGLE STRANDED (CCCTAA)N TELOMERIC MOTIF

    No full text
    corecore