2,103 research outputs found

    Development of antimicrobial peptides from amphibians

    Get PDF
    Since the discovery of magainins from the skin secretions of the African toad Xenopus laevis by Michael Zasloff in 1987, an increasing number of antimicrobial peptides (AMPs) has been identified in different anuran species and studied in detail [...]

    Antipseudomonal and immunomodulatory properties of esc peptides: Promising features for treatment of chronic infectious diseases and inflammation

    Get PDF
    Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both an-timicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides’ ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosor-bent assay and Western blot analyses, we investigated the peptides’ ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients

    Light environment and Seasonal Dynamics of Microalgae in the Annual Sea Ice at Terra Nova Bay, Ross Sea, Antarctica

    Get PDF
    We investigated the physical conditions of the Spring pack ice environment at Terra Nova Bay to understand their influence on the structure and physiology of sympagic microalgae. Bio-optical methods were used to study the availability and spectral quality of solar radiation, both inside and underneath the ice cover. Pack ice thickness was around 2.5 m, with a temperature between -2 and -7°C. On average, only 1.4% of surface PAR penetrated to the bottom ice and less than 0.6% below platelet ice level. Surface UV-B radiation under the bottom ice was 0.2-0.4%. Biomass concentrations up to 2400 mg Chl a m-3, dominated by two species of diatoms (Entomoneis kjellmannii and Nitschia cf. stellata), showed marked spatial and temporal patterns. Maximum values were in the platelet ice during the first half of November, and in the bottom ice two weeks later. Strong shade adaptation characteristics emerged clearly and explained the relevant abundance of microalgae within the sea ice, with specific absorption coefficients (a*) as low as 0.005 m2 (mg Chl a)-1 and the photo-acclimation index (Ek) in the range of in situ irradiance. The biomass specific production values were low, around 0.12-0.13 mg C mg Chl a-1 h-1. The hypothesis suggesting bottom ice colonization by platelet ice microalgae is supported here

    The antimicrobial peptide temporin G: Anti-biofilm, anti-persister activities, and potentiator effect of tobramycin efficacy against Staphylococcus aureus

    Get PDF
    Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 ”M vs ATCC and clinical isolates and to be active against persister cells (about 70–80% killing at 50–100 ”M). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 ”M against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections

    Relationship between Vitamin D Status and Autonomic Nervous System Activity

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 8 years, body mass index = 26.7 4.6 kg/m2, 25 hydroxy vitamin D = 69 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 5 to 96 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 25 vs. 99 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies

    Mechanisms of biofilm inhibition and degradation by antimicrobial peptides

    Get PDF
    Many bacteria live as biofilms to cope with unfavourable surroundings. Biofilms start from (i) a planktonic stage, (ii) initial adhesion to surfaces and (iii) formation of sessile micro-colonies that secrete extracellular polymeric substance (EPS), leading to bacterial resistance to antibiotics. Antimicrobial peptides (AMPs) are extensively studied with regard to planktonic bacteria but much less so with regard to biofilm formation. In the present study, we investigated how the above three steps are affected by the properties of the AMPs using a series of peptides composed of six lysines and nine leucines, which differ in their sequences and hence their biophysical properties. Treatment with bactericidal peptides at non-inhibitory concentrations resulted in reduced biofilm growth, for some starting from 25 nM which is 0.2 and 0.4% of their minimum inhibitory concentration (MIC 6.3 and 12.5 ÎŒM, respectively), continuing in a dose-dependent manner. We suggest that reduced bacterial adhesion to surfaces and decreased biofilm growth are due to the peptide's ability to coat either the biomaterial surface or the bacterium itself. Degradation of established biofilms by bactericidal and non-bactericidal peptides, within 1 h of incubation, occurs by either killing of embedded bacteria or detachment of live ones. In addition to shedding light on the mechanism of biofilm inhibition and degradation, these data may assist in the design of anti-biofilm AMPs

    Effects of Isolated Systolic Hypertension and Essential Hypertension on Large and Middle-sized Artery Compliance

    Get PDF
    Systolic hypertension of the elderly is characterized by a reduction in arterial compliance. Whether and to what extent this involves arteries of various structure and size is not well known.To study carotid and radial artery compliance in systolic hypertension of the elderly, compared to essential hypertension and normotension.We investigated 28 elderly patients with systolic hypertension (age 68.6 +/- 1.4 years, mean +/- SE; systolic blood pressure160 mmHg and diastolic blood pressure90 mmHg) plus 17 age-matched patients with essential hypertension and 15 age-matched healthy normotensive subjects. Radial and carotid artery compliance were evaluated using echotracking techniques. In both arteries compliance was assessed statistically and dynamically, i.e. as compliance values throughout the diasto-systolic pressure range. Measurements included intima-media wall thickness of the radial artery.Compared to normotensive subjects, carotid artery compliance was reduced in essential hypertension and more so in systolic hypertension. However, although in both groups radial artery wall thickness was markedly greater than in the normotensive group, radial artery compliance was markedly reduced in systolic hypertension, but unchanged in essential hypertension.In systolic hypertension of the elderly the reduction of arterial compliance is marked in both muscular and large elastic arteries, while in elderly essential hypertensives changes in arterial compliance are more heterogeneous, i.e. only carotid artery compliance is reduced. The different effects of these two types of hypertension on arterial mechanics are visible throughout the physiological range of blood pressure and probably accounted for by different alterations in vessel wall structure

    Cholesterol derivatives make large part of the lipids from epidermal molts of the desert-adapted Gila monster lizard (Heloderma suspectum)

    Get PDF
    In order to understand the cutaneous water loss in the desert-adapted and venomous lizard Heloderma suspectum, the microscopic structure and lipid composition of epidermal molts have been examined using microscopic, spectroscopic and chemical analysis techniques. The molt is formed by a variably thick, superficial beta-layer, an extensive mesos-region and few alpha-cells in its lowermost layers. The beta-layer contains most corneous beta proteins while the mesos-region is much richer in lipids. The proteins in the mesos-region are more unstructured than those located in the beta-layer. Most interestingly, among other lipids, high contents of cholesteryl-ÎČ-glucoside and cholesteryl sulfate were detected, molecules absent or present in traces in other species of squamates. These cholesterol derivatives may be involved in the stabilization and compaction of the mesos-region, but present a limited permeability to water movements. The modest resistance to cutaneous water-loss of this species is compensated by adopting other physiological strategies to limit thermal damage and water transpiration as previous eco-physiological studies have indicated. The increase of steroid derivatives may also be implicated in the heat shock response, influencing the relative behavior in this desert-adapted lizard
    • 

    corecore