2,532 research outputs found
Tolman mass, generalized surface gravity, and entropy bounds
In any static spacetime the quasi-local Tolman mass contained within a volume
can be reduced to a Gauss-like surface integral involving the flux of a
suitably defined generalized surface gravity. By introducing some basic
thermodynamics and invoking the Unruh effect one can then develop elementary
bounds on the quasi-local entropy that are very similar in spirit to the
holographic bound, and closely related to entanglement entropy.Comment: V1: 4 pages. Uses revtex4-1; V2: Three references added; V3: Some
notational changes for clarity; introductory paragraph rewritten; no physics
changes. This version accepted for publication in Physical Review Letter
Gravitational energy
Observers at rest in a stationary spacetime flat at infinity can measure
small amounts of rest-mass+internal energies+kinetic energies+pressure energy
in a small volume of fluid attached to a local inertial frame. The sum of these
small amounts is the total "matter energy" for those observers. The total
mass-energy minus the matter energy is the binding gravitational energy.
Misner, Thorne and Wheeler evaluated the gravitational energy of a
spherically symmetric static spacetime. Here we show how to calculate
gravitational energy in any static and stationary spacetime for isolated
sources with a set of observers at rest.
The result of MTW is recovered and we find that electromagnetic and
gravitational 3-covariant energy densities in conformastatic spacetimes are of
opposite signs. Various examples suggest that gravitational energy is negative
in spacetimes with special symmetries or when the energy-momentum tensor
satisfies usual energy conditions.Comment: 12 pages. Accepted for publication in Class. Quantum Gra
Fluctuation theorem for the renormalized entropy change in the strongly nonlinear nonequilibrium regime
Generalizing a recent work [T. Taniguchi and E. G. D. Cohen, J. Stat. Phys.
126, 1 (2006)] that was based on the Onsager-Machlup theory, a nonlinear
relaxation process is considered for a macroscopic thermodynamic quantity. It
is found that the fluctuation theorem holds in the nonlinear nonequilibrium
regime if the change of the entropy characterized by local equilibria is
appropriately renormalized. The fluctuation theorem for the ordinary entropy
change is recovered in the linear near-equilibrium case. This result suggests a
possibility that the the information-theoretic entropy of the Shannon form may
be modified in the strongly nonlinear nonequilibrium regime.Comment: 14 pages, no figures. Typos correcte
Configurational temperature control for atomic and molecular systems
A new configurational temperature thermostat suitable for molecules with holonomic constraints is derived. This thermostat has a simple set of motion equations, can generate the canonical ensemble in both position and momentum space, acts homogeneously through the spatial
coordinates, and does not intrinsically violate the constraints. Our new configurational thermostat is
closely related to the kinetic temperature Nosé-Hoover thermostat with feedback coupled to the position variables via a term proportional to the net molecular force. We validate the thermostat by comparing equilibrium static and dynamic quantities for a fluid of n-decane molecules under
configurational and kinetic temperature control. Practical aspects concerning the implementation of the new thermostat in a molecular dynamics code and the potential applications are discussed
Collapsing Spheres Satisfying An "Euclidean Condition"
We study the general properties of fluid spheres satisfying the heuristic
assumption that their areas and proper radius are equal (the Euclidean
condition). Dissipative and non-dissipative models are considered. In the
latter case, all models are necessarily geodesic and a subclass of the
Lemaitre-Tolman-Bondi solution is obtained. In the dissipative case solutions
are non-geodesic and are characterized by the fact that all non-gravitational
forces acting on any fluid element produces a radial three-acceleration
independent on its inertial mass.Comment: 1o pages, Latex. Title changed and text shortened to fit the version
to appear in Gen.Rel.Grav
Gravitational field of charged gyratons
We study relativistic gyratons which carry an electric charge. The
Einstein-Maxwell equations in arbitrary dimensions are solved exactly in the
case of a charged gyraton propagating in an asymptotically flat metric.Comment: 11 pages, some new comments and new references added. To appear in
Classical and Quantum Gravit
Minimal length scales for the existence of local temperature
We review a recent approach to determine the minimal spatial length scales on
which local temperature exists. After mentioning an experiment where such
considerations are of relevance, we first discuss the precise definition of the
existence of local temperature and its physical relevance. The approach to
calculate the length scales in question considers homogenous chains of
particles with nearest neighbor interactions. The entire chain is assumed to be
in a thermal equilibrium state and it is analyzed when such an equilibrium
state at the same time exists for a local part of it. The result yields
estimates for real materials, the liability of which is discussed in the
sequel. We finally consider a possibility to detect the existence or
non-existence of a local thermal state in experiment.Comment: review, 13 pages, 11 figure
What Motivates Men\u27s Involvement in Gender-Based Violence Prevention? Latent Class Profiles and Correlates in an International Sample of Men
Data from an international sample of 392 men who had attended gender-based violence (GBV) prevention events were used to examine motivations for involvement in GBV prevention work. Participants responded to an online survey (available in English, French, and Spanish). The most commonly reported reasons for involvement included concern for related social justice issues (87 percent), exposure to the issue of violence through work (70 percent), hearing a moving story about domestic or sexual violence (59 percent), and disclosure of abuse from someone close to the participant (55 percent). Using a latent class analysis, we identified four profiles of men\u27s motivations: low personal connection (22 percent), empathetic connection (26 percent), violence exposed connection (23 percent), and high personal and empathetic connection (29 percent). Participants classified into these profiles did not differ in length of movement involvement but some differences on key ally variables and by global region did emerge. Implications for engagement strategies and future research are discussed
Can black holes be torn up by phantom dark energy in cyclic cosmology?
Infinitely cyclic cosmology is often frustrated by the black hole problem. It
has been speculated that this obstacle in cyclic cosmology can be removed by
taking into account a peculiar cyclic model derived from loop quantum cosmology
or the braneworld scenario, in which phantom dark energy plays a crucial role.
In this peculiar cyclic model, the mechanism of solving the black hole problem
is through tearing up black holes by phantom. However, using the theory of
fluid accretion onto black holes, we show in this paper that there exists
another possibility: that black holes cannot be torn up by phantom in this
cyclic model. We discussed this possibility and showed that the masses of black
holes might first decrease and then increase, through phantom accretion onto
black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde
Type II critical phenomena of neutron star collapse
We investigate spherically-symmetric, general relativistic systems of
collapsing perfect fluid distributions. We consider neutron star models that
are driven to collapse by the addition of an initially "in-going" velocity
profile to the nominally static star solution. The neutron star models we use
are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic,
gamma-law equation of state. The initial values of 1) the amplitude of the
velocity profile, and 2) the central density of the star, span a parameter
space, and we focus only on that region that gives rise to Type II critical
behavior, wherein black holes of arbitrarily small mass can be formed. In
contrast to previously published work, we find that--for a specific value of
the adiabatic index (Gamma = 2)--the observed Type II critical solution has
approximately the same scaling exponent as that calculated for an
ultrarelativistic fluid of the same index. Further, we find that the critical
solution computed using the ideal-gas equations of state asymptotes to the
ultrarelativistic critical solution.Comment: 24 pages, 22 figures, RevTeX 4, submitted to Phys. Rev.
- …