31,354 research outputs found

    Effect of hybridization on the magnetic properties of correlated two-band metals

    Full text link
    The magnetic properties of transition-like metals are discussed within the single site approximation, which is a picture to take into account electron correlations. The metal is described by two hybridized bands one of which includes Coulomb correlation. The presented results indicate that ferromagnetism arises for adequate values of hybridization (V), correlation (U) and occupation number(nσn_{\sigma}). Some similarities with Dynamical Mean-Field Theory (DMFT) are indicated.Comment: 3 pages, 3 figures, presented at the 53rd MMM08 conference in Austin, 200

    Response of Bose gases in time-dependent optical superlattices

    Full text link
    The dynamic response of ultracold Bose gases in one-dimensional optical lattices and superlattices is investigated based on exact numerical time evolutions in the framework of the Bose-Hubbard model. The system is excited by a temporal amplitude modulation of the lattice potential, as it was done in recent experiments. For regular lattice potentials, the dynamic signatures of the superfluid to Mott-insulator transition are studied and the position and the fine-structure of the resonances is explained by a linear response analysis. Using direct simulations and the perturbative analysis it is shown that in the presence of a two-colour superlattice the excitation spectrum changes significantly when going from the homogeneous Mott-insulator the quasi Bose-glass phase. A characteristic and experimentally accessible signature for the quasi Bose-glass is the appearance of low-lying resonances and a suppression of the dominant resonance of the Mott-insulator phase.Comment: 20 pages, 9 figures; added references and corrected typo

    A new code for Fourier-Legendre analysis of large datasets: first results and a comparison with ring-diagram analysis

    Full text link
    Fourier-Legendre decomposition (FLD) of solar Doppler imaging data is a promising method to estimate the sub-surface solar meridional flow. FLD is sensible to low-degree oscillation modes and thus has the potential to probe the deep meridional flow. We present a newly developed code to be used for large scale FLD analysis of helioseismic data as provided by the Global Oscillation Network Group (GONG), the Michelson Doppler Imager (MDI) instrument, and the upcoming Helioseismic and Magnetic Imager (HMI) instrument. First results obtained with the new code are qualitatively comparable to those obtained from ring-diagram analyis of the same time series.Comment: 4 pages, 2 figures, 4th HELAS International Conference "Seismological Challenges for Stellar Structure", 1-5 February 2010, Arrecife, Lanzarote (Canary Islands

    Integral field spectroscopy of QSO host galaxies

    Full text link
    We describe a project to study the state of the ISM in ~20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe method developement to access the stellar and gas component of the spectrum without the strong nuclear emission to access the host galaxy properties also in the central region. It shows that integral field spectroscopy promises to be very efficient to study the gas distribution and its velocity field, and also spatially resolved stellar population in the host galaxies also of luminous AGN.Comment: 4 pages, 6 figures, Euro3D Science Workshop, Cambridge, May 2003, AN, accepte

    The impact of job complexity and study design on situational and behavior description interview validity

    Get PDF
    The primary purpose of this investigation was to test two key characteristics hypothesized to influence the validity of situational (SI) and behavior description (BDI) structured interviews. A meta-analysis of 54 studies with a total sample size of 5536 suggested that job complexity influences the validity of SIs, with decreased validity for high-complexity jobs, but does not influence the validity of BDIs. And, results indicated a main effect for study design across both SIs and BDIs, with predictive studies having 0.10 lower validity on average than concurrent studies. Directions for future research are discussed

    Where is the fuzz? Undetected Lyman alpha nebulae around QSOs at z~2.3

    Full text link
    We observed a small sample of 5 radio-quiet QSOs with integral field spectroscopy to search for possible extended emission in the Lyα\alpha line. We subtracted the QSO point sources using a simple PSF self-calibration technique that takes advantage of the simultaneous availability of spatial and spectral information. In 4 of the 5 objects we find no significant traces of extended Lyα\alpha emission beyond the contribution of the QSO nuclei itself, while in UM 247 there is evidence for a weak and spatially quite compact excess in the Lyα\alpha line at several kpc outside the nucleus. For all objects in our sample we estimated detection limits for extended, smoothly distributed Lyα\alpha emission by adding fake nebulosities into the datacubes and trying to recover them after PSF subtraction. Our observations are consistent with other studies showing that giant Lyα\alpha nebulae such as those found recently around some quasars are very rare. Lyα\alpha fuzz around typical radio-quiet QSOs is fainter, less extended and is therefore much harder to detect. The faintness of these structures is consistent with the idea that radio-quiet QSOs typically reside in dark matter haloes of modest masses.Comment: 12 Pages, Accepted for publication in A&

    Phase Transitions in Hexane Monolayers Physisorbed onto Graphite

    Get PDF
    We report the results of molecular dynamics (MD) simulations of a complete monolayer of hexane physisorbed onto the basal plane of graphite. At low temperatures the system forms a herringbone solid. With increasing temperature, a solid to nematic liquid crystal transition takes place at T1=138±2T_1 = 138 \pm 2K followed by another transition at T2=176±3T_2 = 176 \pm 3K into an isotropic fluid. We characterize the different phases by calculating various order parameters, coordinate distributions, energetics, spreading pressure and correlation functions, most of which are in reasonable agreement with available experimental evidence. In addition, we perform simulations where the Lennard-Jones interaction strength, corrugation potential strength and dihedral rigidity are varied in order to better characterize the nature of the two transitions through. We find that both phase transitions are facilitated by a ``footprint reduction'' of the molecules via tilting, and to a lesser degree via creation of gauche defects in the molecules.Comment: 18 pages, eps figures embedded, submitted to Phys. Rev.
    corecore