1,161 research outputs found

    Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force

    Get PDF
    The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition of Blanchet & Iyer (2003) to the case of spinning (nonprecessing) binaries. The Blanchet-Iyer ISCO condition has two desirable and unexpected properties: (1) it exactly reproduces the Schwarzschild ISCO in the test-mass limit, and (2) it accurately approximates the recently-calculated shift in the Schwarzschild ISCO frequency due to the conservative-piece of the gravitational self-force [Barack & Sago (2009)]. The generalization of this ISCO condition to spinning binaries has the property that it also exactly reproduces the Kerr ISCO in the test-mass limit (up to the order at which PN spin corrections are currently known). The shift in the ISCO due to the spin of the test-particle is also calculated. Remarkably, the gauge-invariant PN ISCO condition exactly reproduces the ISCO shift predicted by the Papapetrou equations for a fully-relativistic spinning particle. It is surprising that an analysis of the stability of the standard PN equations of motion is able (without any form of "resummation") to accurately describe strong-field effects of the Kerr spacetime. The ISCO frequency shift due to the conservative self-force in Kerr is also calculated from this new ISCO condition, as well as from the effective-one-body Hamiltonian of Barausse & Buonanno (2010). These results serve as a useful point-of-comparison for future gravitational self-force calculations in the Kerr spacetime.Comment: 17 pages, 2 figures, 1 table. v2: references added; minor changes to match published versio

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Self force in 2+1 electrodynamics

    Full text link
    The radiation reaction problem for an electric charge moving in flat space-time of three dimensions is discussed. The divergences stemming from the pointness of the particle are studied. A consistent regularization procedure is proposed, which exploits the Poincar\'e invariance of the theory. Effective equation of motion of radiating charge in an external electromagnetic field is obtained via the consideration of energy-momentum and angular momentum conservation. This equation includes the effect of the particle's own field. The radiation reaction is determined by the Lorentz force of point-like charge acting upon itself plus a non-local term which provides finiteness of the self-action.Comment: 20 pages, 3 figure

    Emergence of thin shell structure during collapse in isotropic coordinates

    Full text link
    Numerical studies of gravitational collapse in isotropic coordinates have recently shown an interesting connection between the gravitational Lagrangian and black hole thermodynamics. A study of the actual spacetime was not the main focus of this work and in particular, the rich and interesting structure of the interior has not been investigated in much detail and remains largely unknown. We elucidate its features by performing a numerical study of the spacetime in isotropic coordinates during gravitational collapse of a massless scalar field. The most salient feature to emerge is the formation of a thin shell of matter just inside the apparent horizon. The energy density and Ricci scalar peak at the shell and there is a jump discontinuity in the extrinsic curvature across the apparent horizon, the hallmark that a thin shell is present in its vicinity. At late stages of the collapse, the spacetime consists of two vacuum regions separated by the thin shell. The interior is described by an interesting collapsing isotropic universe. It tends towards a vacuum (never reaches a perfect vacuum) and there is a slight inhomogeneity in the interior that plays a crucial role in the collapse process as the areal radius tends to zero. The spacetime evolves towards a curvature (physical) singularity in the interior, both a Weyl and Ricci singularity. In the exterior, our numerical results match closely the analytical form of the Schwarzschild metric in isotropic coordinates, providing a strong test of our numerical code.Comment: 24 pages, 10 figures. version to appear in Phys. Rev.

    A matched expansion approach to practical self-force calculations

    Full text link
    We discuss a practical method to compute the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass mu orbiting a black hole of mass M to order mu^2, provided mu/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible.Comment: IOP style, 8 eps figures, accepted for publication in a special issue of Classical and Quantum Gravit

    Gravitational radiation from infall into a black hole: Regularization of the Teukolsky equation

    Full text link
    The Teukolsky equation has long been known to lead to divergent integrals when it is used to calculate the gravitational radiation emitted when a test mass falls into a black hole from infinity. Two methods have been used in the past to remove those divergent integrals. In the first, integrations by parts are carried out, and the infinite boundary terms are simply discarded. In the second, the Teukolsky equation is transformed into another equation which does not lead to divergent integrals. The purpose of this paper is to show that there is nothing intrinsically wrong with the Teukolsky equation when dealing with non-compact source terms, and that the divergent integrals result simply from an incorrect choice of Green's function. In this paper, regularization of the Teukolsky equation is carried out in an entirely natural way which does not involve modifying the equation.Comment: ReVTeX, 23 page

    Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion

    Full text link
    A particle of mass μ\mu moves on a circular orbit around a nonrotating black hole of mass MM. Under the assumption μ≪M\mu \ll M the gravitational waves emitted by such a binary system can be calculated exactly numerically using black-hole perturbation theory. If, further, the particle is slowly moving, then the waves can be calculated approximately analytically, and expressed in the form of a post-Newtonian expansion. We determine the accuracy of this expansion in a quantitative way by calculating the reduction in signal-to-noise ratio incurred when matched filtering the exact signal with a nonoptimal, post-Newtonian filter.Comment: 5 pages, ReVTeX, 1 figure. A typographical error was discovered in the computer code used to generate the results presented in the paper. The corrected results are presented in an Erratum, which also incorporates new results, obtained using the recently improved post-Newtonian calculations of Tanaka, Tagoshi, and Sasak

    Perturbative evolution of particle orbits around Kerr black holes: time domain calculation

    Get PDF
    Treating the Teukolsky perturbation equation numerically as a 2+1 PDE and smearing the singularities in the particle source term by the use of narrow Gaussian distributions, we have been able to reproduce earlier results for equatorial circular orbits that were computed using the frequency domain formalism. A time domain prescription for a more general evolution of nearly geodesic orbits under the effects of radiation reaction is presented. This approach can be useful when tackling the more realistic problem of a stellar-mass black hole moving on a generic orbit around a supermassive black hole under the influence of radiation reaction forces.Comment: 8 pages, 5 figures, problems with references and double-printing fixe

    LISA detections of massive black hole inspirals: parameter extraction errors due to inaccurate template waveforms

    Full text link
    The planned Laser Interferometer Space Antenna (LISA) is expected to detect the inspiral and merger of massive black hole binaries (MBHBs) at z <~ 5 with signal-to-noise ratios (SNRs) of hundreds to thousands. Because of these high SNRs, and because these SNRs accrete over periods of weeks to months, it should be possible to extract the physical parameters of these systems with high accuracy; for instance, for a ~ 10^6 Msun MBHBs at z = 1 it should be possible to determine the two masses to ~ 0.1% and the sky location to ~ 1 degree. However, those are just the errors due to noise: there will be additional "theoretical" errors due to inaccuracies in our best model waveforms, which are still only approximate. The goal of this paper is to estimate the typical magnitude of these theoretical errors. We develop mathematical tools for this purpose, and apply them to a somewhat simplified version of the MBHB problem, in which we consider just the inspiral part of the waveform and neglect spin-induced precession, eccentricity, and PN amplitude corrections. For this simplified version, we estimate that theoretical uncertainties in sky position will typically be ~ 1 degree, i.e., comparable to the statistical uncertainty. For the mass and spin parameters, our results suggest that while theoretical errors will be rather small absolutely, they could still dominate over statistical errors (by roughly an order of magnitude) for the strongest sources. The tools developed here should be useful for estimating the magnitude of theoretical errors in many other problems in gravitational-wave astronomy.Comment: RevTeX4, 16 pages, 2 EPS figures. Corrected typos, clarified statement

    Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems

    Full text link
    Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular momentum J of two non-spinning compact objects moving on circular orbits with frequency Omega, at leading order beyond the test-particle approximation. By minimizing E(Omega) we recover the exact frequency shift of the Schwarzschild innermost stable circular orbit induced by the conservative piece of the gravitational self-force. Comparing our results for the coordinate invariant relation E(J) to those recently obtained from numerical simulations of comparable-mass non-spinning black-hole binaries, we find a remarkably good agreement, even in the strong-field regime. Our findings confirm that the domain of validity of perturbative calculations may extend well beyond the extreme mass-ratio limit.Comment: 5 pages, 1 figure; matches the published versio
    • …
    corecore