2,609 research outputs found
The detailed chemical composition of the terrestrial planet host Kepler-10
Chemical abundance studies of the Sun and solar twins have demonstrated that
the solar composition of refractory elements is depleted when compared to
volatile elements, which could be due to the formation of terrestrial planets.
In order to further examine this scenario, we conducted a line-by-line
differential chemical abundance analysis of the terrestrial planet host
Kepler-10 and fourteen of its stellar twins. Stellar parameters and elemental
abundances of Kepler-10 and its stellar twins were obtained with very high
precision using a strictly differential analysis of high quality CFHT, HET and
Magellan spectra. When compared to the majority of thick disc twins, Kepler-10
shows a depletion in the refractory elements relative to the volatile elements,
which could be due to the formation of terrestrial planets in the Kepler-10
system. The average abundance pattern corresponds to ~ 13 Earth masses, while
the two known planets in Kepler-10 system have a combined ~ 20 Earth masses.
For two of the eight thick disc twins, however, no depletion patterns are
found. Although our results demonstrate that several factors (e.g., planet
signature, stellar age, stellar birth location and Galactic chemical evolution)
could lead to or affect abundance trends with condensation temperature, we find
that the trends give further support for the planetary signature hypothesis.Comment: 12 pages, 11 figures, accepted for publication in MNRA
The age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way
The four main findings about the age and abundance structure of the Milky Way
bulge based on microlensed dwarf and subgiant stars are: (1) a wide metallicity
distribution with distinct peaks at [Fe/H]=-1.09, -0.63, -0.20, +0.12, +0.41;
(2) a high fraction of intermediate-age to young stars where at [Fe/H]>0 more
than 35 % are younger than 8 Gyr, (3) several episodes of significant star
formation in the bulge 3, 6, 8, and 11 Gyr ago; (4) the `knee' in the
alpha-element abundance trends of the sub-solar metallicity bulge appears to be
located at a slightly higher [Fe/H] (about 0.05 to 0.1 dex) than in the local
thick disk.Comment: 4 pages, contributed talk at the IAU Symposium 334 "Rediscovering our
Galaxy" in Potsdam, July 10-14, 201
Undated - L.M. Howes recommends Sergeant Joseph R. Conant for promotion
https://digitalmaine.com/cw_me_4th_regiment_corr/1007/thumbnail.jp
Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure
Kinetics of CH₂OO Criegee intermediate reactions with SO₂, NO₂, NO, H₂O and CH₃CHO and CH₂I radical reactions with NO₂ are reported as a function of pressure at 295 K. Measurements were made under pseudo-first-order conditions using flash photolysis of CH₂I₂–O₂–N₂ gas mixtures in the presence of excess co-reagent combined with monitoring of HCHO reaction products by laser-induced fluorescence (LIF) spectroscopy and, for the reaction with SO₂, direct detection of CH₂OO by photoionisation mass spectrometry (PIMS). Rate coefficients for CH₂OO + SO₂ and CH₂OO + NO₂ are independent of pressure in the ranges studied and are (3.42 ± 0.42) × 10‾¹¹ cm³ s‾¹ (measured between 1.5 and 450 Torr) and (1.5 ± 0.5) × 10‾¹² cm³ s‾¹ (measured between 25 and 300 Torr), respectively. The rate coefficient for CH₂OO + CH₃CHO is pressure dependent, with the yield of HCHO decreasing with increasing pressure. Upper limits of 2 × 10−13 cm³ s‾¹ and 9 × 10−17 cm³ s‾¹ are placed on the rate coefficients for CH₂OO + NO and CH₂OO + H₂O, respectively. The upper limit for the rate coefficient for CH₂OO + H₂O is significantly lower than has been reported previously, with consequences for modelling of atmospheric impacts of CH₂OO chemistry
Environmental sustainability: A case of policy implementation failure?
© 2017 by the author. For a generation, governments around the world have been committed to sustainable development as a policy goal. This has been supported by an array of new policies ranging from international agreements, to national strategies, environmental laws at many levels of government, regional programs, and local plans. Despite these efforts, decades of scientific monitoring indicate that the world is no closer to environmental sustainability and in many respects the situation is getting worse. This paper argues that a significant contributing factor to this situation is policy implementation failure. A systematic review of the literature reveals that the failure to achieve the intended outcomes of environmental policies is due to economic, political and communication factors. Conflict between the objectives of environmental policies and those focused on economic development, a lack of incentives to implement environmental policies, and a failure to communicate objectives to key stakeholders are all key factors that contribute to the inability to attain environmental sustainability
Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton
It is widely accepted that alkaline phosphatase activity (APA) is an efficient indicator of phosphate limitation in freshwater phytoplankton communities. In this study, we investigated whether the response in APA to phosphate limitation differs among the taxa in a mixed phytoplankton assemblage. We used the new enzyme-labeled fluorescence (ELF) technique, which allows microscopic detection of phosphate limitation in individual cells of multiple species. The most prominent findings of this study were that alkaline phosphatase (AP) was induced in many, but not all taxa and that different taxa, as well as different cells within a single taxon, experienced different degrees of phosphate stress under the same environmental conditions. Our approach was to manipulate the limiting nutrient in a natural freshwater phytoplankton community by incubating lake water in the laboratory. We induced nitrogen (N) or phosphate limitation through additions of inorganic nutrients. Both the ELF assay and bulk APA indicated that the lake phytoplankton were not phosphate limited at the start of the experiment. During the experiment, several chlorophyte taxa (e.g., Eudorina and an unidentified solitary spiny coccoid) were driven to phosphate limitation when inorganic N was added, as evidenced by a higher percentage of ELF-labeled cells relative to controls, whereas other chlorophyte taxa such as Actinastrum and Dicryosphaerium were not phosphate stressed under these conditions. In the phosphate-limited treatments, little or no ELF labeling was observed in any cyanobacterial taxa. Furthermore, all taxa observed after the ELF labeling procedure (>10-mum fraction) were labeled with ELF at least on one occasion, demonstrating the wide applicability of the ELF method. By using ELF labeling in tandem with bulk APA, the resolution and analysis of phosphate limitation was increased, allowing the identification of specific phosphate-stressed taxa
The Met80Ala and Tyr67His/Met80Ala mutants of human cytochrome cshed light on the reciprocal role of Met80 and Tyr67 in regulating ligand access into the heme pocket.
The spectroscopic and functional properties of the single Met80Ala and double Tyr67His/Met80Ala mutants of human cytochrome c have been investigated in their ferric and ferrous forms, and in the presence of different ligands, in order to clarify the reciprocal effect of these two residues in regulating the access of exogenous molecules into the heme pocket. In the ferric state, both mutants display an aquo high spin and a low spin species. The latter corresponds to an OH- ligand in Met80Ala but to a His in the double mutant. The existence of these two species is also reflected in the functional behavior of the mutants. The observation that (i) a significant peroxidase activity is present in the Met80Ala mutants, (ii) the substitution of the Tyr67 by His leads to only a slight increase of the peroxidase activity in the Tyr67His/Met80Ala double mutant with respect to wild type, while the Tyr67His mutant behaves as wild type, as previously reported, suggests that the peroxidase activity of cytochrome c is linked to an overall conformational change of the heme pocket and not only to the disappearance of the Fe-Met80 bond. Therefore, in human cytochrome c there is an interplay between the two residues at positions 67 and 80 that affects the conformation of the distal side of the heme pocket, and thus the sixth coordination of the hem
The key role played by charge in the interaction of cytochrome c with cardiolipin
Cytochrome c undergoes structural variations upon binding of cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several mechanisms governing cytochrome c/cardiolipin (cyt c/CL) recognition have been proposed, the interpretation of the process remains, at least in part, unknown. To better define the steps characterizing the cyt c-CL interaction, the role of Lys72 and Lys73, two residues thought to be important in the protein/lipid binding interaction, were recently investigated by mutagenesis. The substitution of the two (positively charged) Lys residues with Asn revealed that such mutations cancel the CL-dependent peroxidase activity of cyt c; furthermore, CL does not interact with the Lys72Asn mutant. In the present paper, we extend our study to the Lys → Arg mutants to investigate the influence exerted by the charge possessed by the residues located at positions 72 and 73 on the cyt c/CL interaction. On the basis of the present work a number of overall conclusions can be drawn: (i) position 72 must be occupied by a positively charged residue to assure cyt c/CL recognition; (ii) the Arg residues located at positions 72 and 73 permit cyt c to react with CL; (iii) the replacement of Lys72 with Arg weakens the second (low-affinity) binding transition; (iv) the Lys73Arg mutation strongly increases the peroxidase activity of the CL-bound protein
- …