1,820 research outputs found

    Measurements of the Total Cross Section for the Scattering of Polarized Neutrons from Polarized 3^3He

    Full text link
    Measurements of polarized neutron--polarized 3^3He scattering are reported. The target consisted of cryogenically-polarized solid 3^3He, thickness 0.04 atom/b and polarization 40%. The longitudinal and transverse total cross-section differences ΔσL\Delta\sigma_L and ΔσT\Delta\sigma_T were measured for incident neutron energies 2-8 MeV. The results are compared to phase-shift predictions based on four different analyses of n-3^3He scattering. The best agreement is obtained with a recent R-matrix analysis of A=4 scattering and reaction data, lending strong suport to the 4^4He level scheme obtained in that analysis.Comment: 19 pages RevTeX style, 5 postscript figures, excepted for publication in the Aug96 issue of Phys. Rev. C. Revised version includes correct version of 1 postscript figur

    Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    Get PDF
    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica

    Parity Violation in Neutron Resonances in 107,109Ag

    Full text link
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Perfect Strategies for Non-Local Games

    Get PDF
    We describe the main classes of non-signalling bipartite correlations in terms of states on operator system tensor products. This leads to the introduction of another new class of games, called reflexive games, which are characterised as the hardest non-local games that can be won using a given set of strategies. We provide a characterisation of their perfect strategies in terms of operator system quotients. We introduce a new class of non-local games, called imitation games, in which the players display linked behaviour, and which contain as subclasses the classes of variable assignment games, binary constraint system games, synchronous games, many games based on graphs, and unique games. We associate a C*-algebra C∗(G) to any imitation game G, and show that the existence of perfect quantum commuting (resp. quantum, local) strategies of G can be characterised in terms of properties of this C*-algebra. We single out a subclass of imitation games, which we call mirror games, and provide a characterisation of their quantum commuting strategies that has an algebraic flavour, showing in addition that their approximately quantum perfect strategies arise from amenable traces on the encoding C*-algebra

    Parity Violation in 232Th Neutron Resonances Above 250 eV

    Get PDF
    The analysis of parity nonconservation (PNC) measurements performed on 232Th by the TRIPLE Collaboration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten statistically significant parity violations have the same sign. However, at higher energies PNC effects of both signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target. Although the limited experimental energy resolution precluded analysis in terms of the longitudinal asymmetry, parity violations were observed and the cross section differences for positive and negative neutron helicities were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for which longitudinal asymmetries were obtained previously. For energies below 250 eV, the p-wave neutron strength functions for the J=1/2 and J=3/2 states were extracted: S1/21=(1.68±0.61)×10-4 and S3/21=(0.75±0.18)×10-4. The data provide constraints on the properties of local doorway states proposed to explain the PNC sign effect in thorium

    Neutron Resonance Spectroscopy of 117Sn from1 eV to 1.5 keV

    Full text link
    Parity violation has been studied recently for neutron resonances in 117Sn. The neutron resonance spectroscopy is essential for the analysis of the parity violation data. We have measured neutron resonances in 117Sn for neutron energies from 1 to 1500 eV using the time-of-flight method and the (n,γ) reaction. The sample was enriched to 87.6% 117Sn. Neutron scattering and radiative widths were determined, and orbital angular momentum assignments were made with a Bayesian analysis. The s-wave and p-wave strength functions and average level spacings were determined

    Parity Violation in Neutron Resonances in 107,109Ag

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Search for Parity Violation in 93Nb Neutron Resonances

    Get PDF
    A new search has been performed for parity violation in the compound nuclear states of 94Nb by measuring the helicity dependence of the neutron total cross section. Transmission measurements on a thick niobium target were performed by the time-of-flight method at the Manuel Lujan Neutron Scattering Center with a longitudinally polarized neutron beam in the energy range 32 to 1000 eV. A total of 18 p-wave resonances in 93Nb were studied with none exhibiting a statistically significant parity-violating longitudinal asymmetry. An upper limit of 1.0×10-7 eV (95% confidence level) was obtained for the weak spreading widthΓw in 93Nb
    corecore