32 research outputs found

    Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol

    Get PDF
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process

    Measurement of radon and xenon binding to a cryptophane molecular host

    No full text
    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K

    Interaction between rs10830962 polymorphism in MTNR1B and lifestyle intervention on maternal and neonatal outcomes : secondary analyses of the DALI lifestyle randomized controlled trial

    No full text
    Background: Interactions between polymorphisms of the melatonin receptor 1B (MTNR1B ) gene and lifestyle intervention for gestational diabetes have been described. Whether these are specific for physical activity or the healthy eating intervention is unknown. Objectives: The aim was to assess the interaction between MTNR1B rs10830962 and rs10830963 polymorphisms and lifestyle interventions during pregnancy. Methods: Women with a BMI (in kg/m2) of ≥29 (n = 436) received counseling on healthy eating (HE), physical activity (PA), or both. The control group received usual care. This secondary analysis had a factorial design with comparison of HE compared with no HE and PA compared with no PA. Maternal outcomes at 24–28 wk were gestational weight gain (GWG), maternal fasting glucose, insulin, insulin resistance (HOMA-IR), disposition index, and development of GDM. Neonatal outcomes were cord blood leptin and C-peptide and estimated neonatal fat percentage. The interaction between receiving either the HE or PA intervention and genotypes of both rs10830962 and rs10830963 was assessed using multilevel regression analysis. Results: GDM risk was increased in women homozygous for the G allele of rs10830962 (OR: 2.60; 95% CI: 1.34, 5.06) or rs10830963 (OR: 2.83; 95% CI: 1.24, 6.47). Significant interactions between rs10830962 and interventions were found: in women homozygous for the G allele but not in the other genotypes, the PA intervention reduced maternal fasting insulin (β: –0.16; 95% CI: –0.33, 0.02; P = 0.08) and HOMA-IR (β: –0.17; 95% CI: –0.35, 0.01; P = 0.06), and reduced cord blood leptin (β: –0.84; 95% CI: –1.42, –0.25; P = 0.01) and C-peptide (β: –0.62; 95% CI: –1.07, –0.17; P = 0.01). In heterozygous women, the HE intervention had no effect, whereas in women homozygous for the C allele, HE intervention reduced GWG (β: −1.6 kg; 95% CI: −2.4, −0.8 kg). No interactions were found. Conclusions: In women homozygous for the risk allele of MTNR1B rs10830962, GDM risk was increased and PA intervention might be more beneficial than HE intervention for reducing maternal insulin resistance, cord blood C-peptide, and cord blood leptin
    corecore