203 research outputs found

    Internal kinematics of isolated modelled disk galaxies

    Full text link
    We present a systematic investigation of rotation curves (RCs) of fully hydrodynamically simulated galaxies, including cooling, star formation with associated feedback and galactic winds. Applying two commonly used fitting formulae to characterize the RCs, we investigate systematic effects on the shape of RCs both by observational constraints and internal properties of the galaxies. We mainly focus on effects that occur in measurements of intermediate and high redshift galaxies. We find that RC parameters are affected by the observational setup, like slit misalignment or the spatial resolution and also depend on the evolution of a galaxy. Therefore, a direct comparison of quantities derived from measured RCs with predictions of semi-analytic models is difficult. The virial velocity V_c, which is usually calculated and used by semi-analytic models can differ significantly from fit parameters like V_max or V_opt inferred from RCs. We find that V_c is usually lower than typical characteristic velocities derived from RCs. V_max alone is in general not a robust estimator for the virial mass.Comment: 9 pages, 15 figures, accepted for publication in A&

    Internal kinematics of modelled interacting disc galaxies

    Full text link
    We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys disturb the velocity fields significantly and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are significantly rising or falling profiles in the direction of the companion galaxy and pronounced bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. We use a quantitative measure for the asymmetry of rotation curves to show that the appearance of these distortions strongly depends on the viewing angle. We also find in this way that the velocity fields settle back into relatively undisturbed equilibrium states after unequal mass mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no severe distortions anymore. These results are consistent with previous theoretical and observational studies. As an illustration of our results, we compare our simulated velocity fields and direct images with rotation curves from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find remarkable similarities.Comment: 13 pages, 14 figures, accepted for publication in A&A, some improvements and changes, main conclusions are unaffecte

    The effects of ram-pressure stripping on the internal kinematics of simulated spiral galaxies

    Full text link
    We investigate the influence of ram-pressure stripping on the internal gas kinematics of simulated spiral galaxies. Additional emphasis is put on the question of how the resulting distortions of the gaseous disc are visible in the rotation curve and/or the full 2D velocity field of galaxies at different redshifts. A Milky-Way type disc galaxy is modelled in combined N-body/hydrodynamic simulations with prescriptions for cooling, star formation, stellar feedback, and galactic winds. This model galaxy moves through a constant density and temperature gas, which has parameters similar to the intra-cluster medium (ICM). Rotation curves (RCs) and 2D velocity fields of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We find that the appearance of distortions of the gaseous disc due to ram-pressure stripping depends on the direction of the acting ram pressure. In the case of face-on ram pressure, the distortions mainly appear in the outer parts of the galaxy in a very symmetric way. In contrast, in the case of edge-on ram pressure we find stronger distortions. The 2D velocity field also shows signatures of the interaction in the inner part of the disc. At angles smaller than 45 degrees between the ICM wind direction and the disc, the velocity field asymmetry increases significantly compared to larger angles. Compared to distortions caused by tidal interactions, the effects of ram-pressure stripping on the velocity field are relatively low in all cases and difficult to observe at intermediate redshift in seeing-limited observations. (abridged)Comment: 9 pages, 11 figures, accepted for publication in A&

    2D velocity fields of simulated interacting disc galaxies

    Full text link
    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for a Tully-Fisher study. For small galaxies (disc scale length ~2 kpc) even strong distortions are not visible in the velocity field at z~0.5 with currently available angular resolution. Therefore we conclude that current distant Tully-Fisher studies cannot give reliable results for low-mass systems. Additionally to these studies we confirm the power of near-infrared integral field spectrometers in combination with adaptive optics (such as SINFONI) to study velocity fields of galaxies at high redshift (z~2).Comment: 12 pages, 18 figures, accepted for publication in A&A, high resolution version can be found at http://astro.uibk.ac.at/~thomas/kronberger.pd

    Finite Element Thermal Study of the Linac4 Plasma Generatora

    Get PDF
    The temperature distribution and heat flow at equilibrium of the plasma generator of the RF-powered non-cesiated Linac4 H- ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW RF power, 2 Hz, 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of SPL, an extrapolation of the heat load towards 100 kW RF power, 50 Hz repetition rate and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in HP-SPL

    Internal kinematics of spiral galaxies in distant clusters III. Velocity fields from FORS2/MXU spectroscopy

    Get PDF
    (Abridged) We study the impact of cluster environment on the evolution of spiral galaxies by examining their structure and kinematics. Rather than two-dimensional rotation curves, we observe complete velocity fields by placing three adjacent and parallel FORS2 MXU slits on each object, yielding several emission and absorption lines. The gas velocity fields are reconstructed and decomposed into circular rotation and irregular motions using kinemetry. To quantify irregularities in the gas kinematics, we define three parameters: sigma_{PA} (standard deviation of the kinematic position angle), Delta phi (the average misalignment between kinematic and photometric position angles) and k_{3,5} (squared sum of the higher order Fourier terms). Using local, undistorted galaxies from SINGS, these can be used to establish the regularity of the gas velocity fields. Here we present the analysis of 22 distant galaxies in the MS0451.6-0305 field with 11 members at z=0.54. In this sample we find both field (4 out of 8) and cluster (3 out of 4) galaxies with velocity fields that are both irregular and asymmetric. We show that these fractions are underestimates of the actual number of galaxies with irregular velocity fields. The values of the (ir)regularity parameters for cluster galaxies are not very different from those of the field galaxies, implying that there are isolated field galaxies that are as distorted as the cluster members. None of the deviations in our small sample correlate with photometric/structural properties like luminosity or disk scale length in a significant way. Our 3D-spectroscopic method successfully maps the velocity field of distant galaxies, enabling the importance and efficiency of cluster specific interactions to be assessed quantitatively.Comment: accepted for publication in A&A, high resolution version available at http://www.astro.rug.nl/~kutdemir/papers

    Automated search for star clusters in large multiband surveys: II. Discovery and investigation of open clusters in the Galactic plane

    Get PDF
    Automated search for star clusters in J,H,K_s data from 2MASS catalog has been performed using the method developed by Koposov et. al (2008). We have found and verified 153 new clusters in the interval of the galactic latitude -24 < b < 24 degrees. Color excesses E(B-V), distance moduli and ages were determined for 130 new and 14 yet-unstudied known clusters. In this paper, we publish a catalog of coordinates, diameters, and main parameters of all the clusters under study. A special web-site available at http://ocl.sai.msu.ru has been developed to facilitate dissemination and scientific usage of the results.Comment: 9 pages, 3 tables, 5 figures, accepted to Astronomy Letter

    Study of Microscopic Residual Stresses in an Extruded Aluminium Alloy Sample after Thermal Treatment

    Get PDF
    Abstract: A method is proposed to calculate the microscopic residual stresses in extruded cylindrical samples of non-ageing aluminium alloy 5083 (Al–Mg), arising from quenching in fresh water from 530°C. We start from the premise that the alloy is single-phase and non-isotropic on a microscopic scale; it consists of many grains that exhibit different mechanical response depending on their crystallographic orientation and neighboring grains. Microscopic residual stresses depend on the applied heat treatment, microstructure and mechanical strength of the individual grains. The stresses were calculated from neutron diffraction data. Genetic programming algorithms were used to calculate microscopic residual stresses, considering that each diffraction peak describes the stress distribution of a group of grains having a certain orientation, size and environment. The algorithm assigns a stress value to each grain according to the distribution of the diffraction peaks and the microstructural parameters of these grains.This work was supported by the Madrid Regional Government-FEDER grant Y2018/NMT-4668 (Micro-Stress-MAP-CM) and the project MAT2017-83825-C4-1-R. We would also like to express our gratitude to FLNR-JINP for the beam time allocated on the FSD instrument, and to the HeuristicLab Software developers

    Kinematic Evolution of Field and Cluster Spiral Galaxies

    Get PDF
    corecore