959 research outputs found

    The Influence of Position Type and Generational Grouping on Job Satisfaction of Milwaukee County\u27s Public Health Workforce

    Get PDF
    Nationally, the public health workforce (PHW) consists of 155,000 staff (NACCHO, 2010). It is projected that half of the PHW will soon retire. Health departments must find ways to retain its diverse workforce. Job Satisfaction is a critical variable that impacts a sustained PHW. Job Satisfaction assessments can promote sustainability of the workforce because the data assembled from the assessments can inform research, policy, and practice. Public health workers that report high Job Satisfaction are less likely to quit as well as delay retirement (RWJF, 2013). The purpose of this study is to examine the influence of position type and generational grouping on Job Satisfaction of the PHW in Milwaukee County, Wisconsin. Two research questions were answered: Does position type and generational grouping influence Job Satisfaction? Position type is categorized into nine distinct roles including Public Health Nursing (PHN) and Health Educators (PHE). Generational grouping is categorized into four classes by year of birth. The self-administered Job Satisfaction Survey (JSS; Spector, 1994) was disseminated via email to all 336 staff employed at various health departments in Milwaukee County; participation was voluntary. Study power was achieved (n = 145). The response was 45% and completion was 97%. The JSS included 19 socio-demographic and 36 Job Satisfaction items grouped in nine subscales graded on a six-point Likert scale. Higher scores represent greater Job Satisfaction when compared to the national baseline. In this study, Job Satisfaction levels varied. When overall Job Satisfaction was assessed by generational grouping, the Milwaukee County PHW sample was more satisfied than the baseline; this was statistically significant. Traditionalists and Generation X were least satisfied compared to Generation Y, which was most satisfied, beyond the baseline. Overall Job Satisfaction was not statistically significant by position type. Environmental Health Professionals were least satisfied compared to PHE, which reported the greatest satisfaction far beyond the baseline. However, four sub-scales were statistically significant among groups of public health workers. Administrators reported the greatest satisfaction for contingent rewards, promotion, and operating procedures. Other Professional Staff reported the greatest satisfaction for their coworkers. PHNs reported lower satisfaction for promotion and operating procedures

    Single spin optical read-out in CdTe/ZnTe quantum dot studied by photon correlation spectroscopy

    Full text link
    Spin dynamics of a single electron and an exciton confined in CdTe/ZnTe quantum dot is investigated by polarization-resolved correlation spectroscopy. Spin memory effects extending over at least a few tens of nanoseconds have been directly observed in magnetic field and described quantitatively in terms of a simple rate equation model. We demonstrate an effective (68%) all-optical read-out of the single carrier spin state through probing the degree of circular polarization of exciton emission after capture of an oppositely charged carrier. The perturbation introduced by the pulsed optical excitation serving to study the spin dynamics has been found to be the main source of the polarization loss in the read-out process. In the limit of low laser power the read-out efficiency extrapolates to a value close to 100%. The measurements allowed us as well to determine neutral exciton spin relaxation time ranging from 3.4 +/- 0.1 ns at B = 0 T to 16 +/- 3 ns at B = 5 T.Comment: to appear in Phys. Rev.

    A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem

    Full text link
    We give a 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem.Comment: 6 figure

    Circularly Polarized Resonant Rayleigh Scattering and Skyrmions in the ν\nu = 1 Quantum Hall Ferromagnet

    Full text link
    We use the circularly polarized resonant Rayleigh scattering (RRS) to study the quantum Hall ferromagnet at ν\nu = 1. At this filling factor we observe a right handed copolarized RRS which probes the Skyrmion spin texture of the electrons in the photoexcited grounds state. The resonant scattering is not present in the left handed copolarization, and this can be related to the correlation between Skymionic effects, screening and spin wave excitations. These results evidence that RRS is a valid method for the study of the spin texture of the quantum Hall states

    RobustSPAM for Inference from Noisy Longitudinal Data and Preservation of Privacy

    Get PDF
    The availability of complex temporal datasets in social, health and consumer contexts has driven the development of pattern mining techniques that enable the use of classical machine learning tools for model building. In this work we introduce a robust temporal pattern mining framework for finding predictive patterns in complex timestamped multivariate and noisy data. We design an algorithm RobustSPAM that enables mining of temporal patterns from data with noisy timestamps. We apply our algorithm to social care data from a local government body and investigate how the efficiency and accuracy of the method depends on the level of noise. We further explore the trade-off between the loss of predictivity due to perturbation of timestamps and the risk of person re-identification

    Forming and confining of dipolar excitons by quantizing magnetic fields

    Full text link
    We show that a magnetic field perpendicular to an AlGaAs/GaAs coupled quantum well efficiently traps dipolar excitons and leads to the stabilization of the excitonic formation and confinement in the illumination area. Hereby, the density of dipolar excitons is remarkably enhanced up to 1011cm2\sim 10^{11} cm^{-2}. By means of Landau level spectroscopy we study the density of excess holes in the illuminated region. Depending on the excitation power and the applied electric field, the hole density can be tuned over one order of magnitude up to 2.5\sim 2.5 1011cm210^{11} cm^{-2} - a value comparable with typical carrier densities in modulation-doped structures.Comment: 4.3 Pages, 4 Figure

    Human Cytomegalovirus Intrahost Evolution--A New Avenue for Understanding and Controlling Herpesvirus Infections [preprint]

    Get PDF
    Human cytomegalovirus (HCMV) is exquisitely adapted to the human host, and much research has focused on its evolution over long timescales spanning millennia. Here, we review recent data exploring the evolution of the virus on much shorter timescales, on the order of days or months. We describe the intrahost genetic diversity of the virus isolated from humans, and how this diversity contributes to HCMV spatiotemporal evolution. We propose mechanisms to explain the high levels of intrahost diversity and discuss how this new information may shed light on HCMV infection and pathogenesis

    Vertex-Coloring with Star-Defects

    Full text link
    Defective coloring is a variant of traditional vertex-coloring, according to which adjacent vertices are allowed to have the same color, as long as the monochromatic components induced by the corresponding edges have a certain structure. Due to its important applications, as for example in the bipartisation of graphs, this type of coloring has been extensively studied, mainly with respect to the size, degree, and acyclicity of the monochromatic components. In this paper we focus on defective colorings in which the monochromatic components are acyclic and have small diameter, namely, they form stars. For outerplanar graphs, we give a linear-time algorithm to decide if such a defective coloring exists with two colors and, in the positive case, to construct one. Also, we prove that an outerpath (i.e., an outerplanar graph whose weak-dual is a path) always admits such a two-coloring. Finally, we present NP-completeness results for non-planar and planar graphs of bounded degree for the cases of two and three colors

    Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus, and Minor-Free Graphs

    Full text link
    A (1 + eps)-approximate distance oracle for a graph is a data structure that supports approximate point-to-point shortest-path-distance queries. The most relevant measures for a distance-oracle construction are: space, query time, and preprocessing time. There are strong distance-oracle constructions known for planar graphs (Thorup, JACM'04) and, subsequently, minor-excluded graphs (Abraham and Gavoille, PODC'06). However, these require Omega(eps^{-1} n lg n) space for n-node graphs. We argue that a very low space requirement is essential. Since modern computer architectures involve hierarchical memory (caches, primary memory, secondary memory), a high memory requirement in effect may greatly increase the actual running time. Moreover, we would like data structures that can be deployed on small mobile devices, such as handhelds, which have relatively small primary memory. In this paper, for planar graphs, bounded-genus graphs, and minor-excluded graphs we give distance-oracle constructions that require only O(n) space. The big O hides only a fixed constant, independent of \epsilon and independent of genus or size of an excluded minor. The preprocessing times for our distance oracle are also faster than those for the previously known constructions. For planar graphs, the preprocessing time is O(n lg^2 n). However, our constructions have slower query times. For planar graphs, the query time is O(eps^{-2} lg^2 n). For our linear-space results, we can in fact ensure, for any delta > 0, that the space required is only 1 + delta times the space required just to represent the graph itself
    corecore