3,105 research outputs found

    Secondary Irregularities in the Equatorial Electrojet

    Get PDF
    Instrumentation techniques and autocorrelation analysis procedures for secondary equatorial electrojet irregularitie

    The Complete Jamming Landscape of Confined Hard Discs

    Full text link
    An exact description of the complete jamming landscape is developed for a system of hard discs of diameter σ\sigma, confined between two lines separated by a distance 1+3/4<H/σ<21+\sqrt{3/4} < H/\sigma < 2. By considering all possible local packing arrangements, the generalized ensemble partition function of jammed states is obtained using the transfer matrix method, which allows us to calculate the configurational entropy and the equation of state for the packings. Exploring the relationship between structural order and packing density, we find that the geometric frustration between local packing environments plays an important role in determining the density distribution of jammed states and that structural "randomness" is a non-monotonic function of packing density. Molecular dynamics simulations show that the properties of the equilibrium liquid are closely related to those of the landscape.Comment: 5 Pages, 4 figure

    Requirements for regional short-haul air service and the definition of a flight program to determine neighborhood reactions to small transport aircraft

    Get PDF
    An evaluation of the current status and future requirements of an intraregional short haul air service is given. A brief definition of the different types of short haul air service is given. This is followed by a historical review of previous attempts to develop short haul air service in high density urban areas and an assessment of the current status. The requirements for intraregional air service, the need for economic and environmental viability and the need for a flight research program are defined. A detailed outline of a research program that would determine urban community reaction to frequent operations of small transport aircraft is also given. Both the operation of such an experiment in a specific region (San Francisco Bay area) and the necessary design modifications of an existing fixed wing aircraft which could be used in the experiment are established. An estimate is made of overall program costs

    A Methodology for Determining Statistical Performance Compliance for Airborne Doppler Radar with Forward-Looking Turbulence Detection Capability

    Get PDF
    The objective of the research developed and presented in this document was to statistically assess turbulence hazard detection performance employing airborne pulse Doppler radar systems. The FAA certification methodology for forward looking airborne turbulence radars will require estimating the probabilities of missed and false hazard indications under operational conditions. Analytical approaches must be used due to the near impossibility of obtaining sufficient statistics experimentally. This report describes an end-to-end analytical technique for estimating these probabilities for Enhanced Turbulence (E-Turb) Radar systems under noise-limited conditions, for a variety of aircraft types, as defined in FAA TSO-C134. This technique provides for one means, but not the only means, by which an applicant can demonstrate compliance to the FAA directed ATDS Working Group performance requirements. Turbulence hazard algorithms were developed that derived predictive estimates of aircraft hazards from basic radar observables. These algorithms were designed to prevent false turbulence indications while accurately predicting areas of elevated turbulence risks to aircraft, passengers, and crew; and were successfully flight tested on a NASA B757-200 and a Delta Air Lines B737-800. Application of this defined methodology for calculating the probability of missed and false hazard indications taking into account the effect of the various algorithms used, is demonstrated for representative transport aircraft and radar performance characteristics

    Is Fitspiration Truly an Inspiration? Relationships between Fitspiration, Exercise, and Body Image

    Get PDF
    Young adults across the United States struggle to meet physical activity recommendations and consume healthy diets, and they often suffer from issues related to body image. Social media influencers dedicated to fitspiration (i.e., fitness inspiration) are purported to have a goal of inspiring others to lead healthier lifestyles. The purpose of this study was to explore the relationships between fitspiration and exercise and body image perceptions amongst college students. Participants (n = 361, mean age = 20.2 years, 78% female) completed surveys that included sociodemographic information, social media usage, fitspiration content engagement, exercise, and body satisfaction. An independent samples t-test assessed differences in exercise by fitspiration viewership, and a chi-square analysis determined relationships between fitspiration and body satisfaction. Participants were routinely active on social media (91% use it for \u3e 1 hour per day), and 61.5% were exposed to fitspiration content. Approximately 41% of respondents have followed exercise advice from fitspiration influencers, though only 11% reported having purchased products. No relationships were reported between following fitspiration and days per week of exercise (M∆ = .02(.20), p = .91). Participants that followed fitspiration were more likely to be dissatisfied with their bodies, X2 (1, n = 316) =7.77, p = .005, compared to participants who did not. Findings demonstrate fitspiration was not related to exercise and was related to poorer body image perceptions among college students. These results are supported by previous findings and indicate a critical misalignment between the purported purpose of fitspiration and the outcome of its viewing

    Test of classical nucleation theory on deeply supercooled high-pressure simulated silica

    Full text link
    We test classical nucleation theory (CNT) in the case of simulations of deeply supercooled, high density liquid silica, as modelled by the BKS potential. We find that at density ρ=4.38\rho=4.38~g/cm3^3, spontaneous nucleation of crystalline stishovite occurs in conventional molecular dynamics simulations at temperature T=3000 K, and we evaluate the nucleation rate J directly at this T via "brute force" sampling of nucleation events. We then use parallel, constrained Monte Carlo simulations to evaluate ΔG(n)\Delta G(n), the free energy to form a crystalline embryo containing n silicon atoms, at T=3000, 3100, 3200 and 3300 K. We find that the prediction of CNT for the n-dependence of ΔG(n)\Delta G(n) fits reasonably well to the data at all T studied, and at 3300 K yields a chemical potential difference between liquid and stishovite that matches independent calculation. We find that nn^*, the size of the critical nucleus, is approximately 10 silicon atoms at T=3300 K. At 3000 K, nn^* decreases to approximately 3, and at such small sizes methodological challenges arise in the evaluation of ΔG(n)\Delta G(n) when using standard techniques; indeed even the thermodynamic stability of the supercooled liquid comes into question under these conditions. We therefore present a modified approach that permits an estimation of ΔG(n)\Delta G(n) at 3000 K. Finally, we directly evaluate at T=3000 K the kinetic prefactors in the CNT expression for J, and find physically reasonable values; e.g. the diffusion length that Si atoms must travel in order to move from the liquid to the crystal embryo is approximately 0.2 nm. We are thereby able to compare the results for J at 3000 K obtained both directly and based on CNT, and find that they agree within an order of magnitude.Comment: corrected calculation, new figure, accepted in JC

    Edwards entropy and compactivity in a model of granular matter

    Full text link
    Formulating a statistical mechanics for granular matter remains a significant challenge, in part, due to the difficulty associated with a complete characterization of the systems under study. We present a fully characterized model of a granular material consisting of NN two-dimensional, frictionless, hard discs, confined between hard walls, including a complete enumeration of all possible jammed structures. We show the properties of the jammed packings are independent of the distribution of defects within the system and that all the packings are isostatic. This suggests the assumption of equal probability for states of equal volume, which provides one possible way of constructing the equivalent of a microcanonical ensemble, is likely to be vaild for our model. An application of the second law of thermodynamics involving two subsystems in contact shows that the expected spontaneous equilibration of defects between the two is accompanied by an increase in entropy and that the equilibirum, obtained by entropy maximization, is characterized by the equality of compactivities. Finally, we explore the properties of the equivalent to the canonical ensemble for this system.Comment: Accepted PR

    Migration of the Texas Farm Population.

    Get PDF
    8 p

    Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation

    Get PDF
    Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources

    Search for a T-odd, P-even Triple Correlation in Neutron Decay

    Get PDF
    Background: Time-reversal-invariance violation, or equivalently CP violation, may explain the observed cosmological baryon asymmetry as well as signal physics beyond the Standard Model. In the decay of polarized neutrons, the triple correlation D\cdot(p_{e}\timesp_{\nu}) is a parity-even, time-reversal- odd observable that is uniquely sensitive to the relative phase of the axial-vector amplitude with respect to the vector amplitude. The triple correlation is also sensitive to possible contributions from scalar and tensor amplitudes. Final-state effects also contribute to D at the level of 1e-5 and can be calculated with a precision of 1% or better. Purpose: We have improved the sensitivity to T-odd, P-even interactions in nuclear beta decay. Methods: We measured proton-electron coincidences from decays of longitudinally polarized neutrons with a highly symmetric detector array designed to cancel the time-reversal-even, parity-odd Standard-Model contributions to polarized neutron decay. Over 300 million proton-electron coincidence events were used to extract D and study systematic effects in a blind analysis. Results: We find D = [-0.94\pm1.89(stat)\pm0.97(sys)]e-4. Conclusions: This is the most sensitive measurement of D in nuclear beta decay. Our result can be interpreted as a measurement of the phase of the ratio of the axial-vector and vector coupling constants (CA/CV= |{\lambda}|exp(i{\phi}_AV)) with {\phi}_AV = 180.012{\deg} \pm0.028{\deg} (68% confidence level) or to constrain time-reversal violating scalar and tensor interactions that arise in certain extensions to the Standard Model such as leptoquarks. This paper presents details of the experiment, analysis, and systematic- error corrections.Comment: 21 pages, 22 figure
    corecore