328 research outputs found

    Inviscid coalescence of drops

    Full text link
    We study the coalescence of two drops of an ideal fluid driven by surface tension. The velocity of approach is taken to be zero and the dynamical effect of the outer fluid (usually air) is neglected. Our approximation is expected to be valid on scales larger than ν=ρν2/σ\ell_{\nu} = \rho\nu^2/\sigma, which is 10nm10 nm for water. Using a high-precision boundary integral method, we show that the walls of the thin retracting sheet of air between the drops reconnect in finite time to form a toroidal enclosure. After the initial reconnection, retraction starts again, leading to a rapid sequence of enclosures. Averaging over the discrete events, we find the minimum radius of the liquid bridge connecting the two drops to scale like rbt1/2r_b \propto t^{1/2}

    Cavitation induced by explosion in a model of ideal fluid

    Full text link
    We discuss the problem of an explosion in the cubic-quintic superfluid model, in relation to some experimental observations. We show numerically that an explosion in such a model might induce a cavitation bubble for large enough energy. This gives a consistent view for rebound bubbles in superfluid and we indentify the loss of energy between the successive rebounds as radiated waves. We compute self-similar solution of the explosion for the early stage, when no bubbles have been nucleated. The solution also gives the wave number of the excitations emitted through the shock wave.Comment: 21 pages,13 figures, other comment

    Vortices in condensate mixtures

    Full text link
    In a condensate made of two different atomic molecular species, Onsager's quantization condition implies that around a vortex the velocity field cannot be the same for the two species. We explore some simple consequences of this observation. Thus if the two condensates are in slow relative translation one over the other, the composite vortices are carried at a velocity that is a fraction of the single species velocity. This property is valid for attractive interaction and below a critical velocity which corresponds to a saddle-node bifurcation.Comment: 4 pages, 3 figure

    Long range correlations in the non-equilibrium quantum relaxation of a spin chain

    Full text link
    We consider the non-stationary quantum relaxation of the Ising spin chain in a transverse field of strength h. Starting from a homogeneously magnetized initial state the system approaches a stationary state by a process possessing quasi long range correlations in time and space, independent of the value of hh. In particular the system exhibits aging (or lack of time translational invariance on intermediate time scales) although no indications of coarsening are present.Comment: 4 pages RevTeX, 2 eps-figures include

    Memory effects in classical and quantum mean-field disordered models

    Full text link
    We apply the Kovacs experimental protocol to classical and quantum p-spin models. We show that these models have memory effects as those observed experimentally in super-cooled polymer melts. We discuss our results in connection to other classical models that capture memory effects. We propose that a similar protocol applied to quantum glassy systems might be useful to understand their dynamics.Comment: 24 pages, 12 figure

    A continuous non-linear shadowing model of columnar growth

    Full text link
    We propose the first continuous model with long range screening (shadowing) that described columnar growth in one space dimension, as observed in plasma sputter deposition. It is based on a new continuous partial derivative equation with non-linear diffusion and where the shadowing effects apply on all the different processes.Comment: Fast Track Communicatio

    Coexisting ordinary elasticity and superfluidity in a model of defect-free supersolid

    Full text link
    We present the mechanics of a model of supersolid in the frame of the Gross-Pitaevskii equation at T=0KT=0K that do not require defects nor vacancies. A set of coupled nonlinear partial differential equations plus boundary conditions is derived. The mechanical equilibrium is studied under external constrains as steady rotation or external stress. Our model displays a paradoxical behavior: the existence of a non classical rotational inertia fraction in the limit of small rotation speed and no superflow under small (but finite) stress nor external force. The only matter flow for finite stress is due to plasticity.Comment: 6 pages, 2 figure

    Electrochemical Multi-Tagging of Cysteinyl Peptides during Microspray Mass Spectrometry: Numerical Simulation of Consecutive Reactions in a Microchannel

    Get PDF
    On-line electrogeneration of mass tags in a microspray emitter is used to quantify the number of cysteine groups in a given peptide. A finite-element simulation of the multi-step process yields the relative distribution and concentration of tags, untagged and tagged species in the microchannel before the spray event. The work focuses on the tagging of cysteine moieties in peptides or proteins by electrogenerated quinone mass probes. The main chemical parameters determining the kinetics of the labelling are assessed and discussed considering the microfluidic aspects of the process. The control of the tagging extent allows the simultaneous MS analysis of both the unmodified and modified peptide(s). The number of cysteine groups corresponds to the number of characteristic mass shifts observed from the unmodified peptide. The present theoretical work establishes the range of optimum conditions for the determination of the number of cysteine groups in peptides containing up to five cysteine groups

    Geometric Laws of Vortex Quantum Tunneling

    Full text link
    In the semiclassical domain the exponent of vortex quantum tunneling is dominated by a volume which is associated with the path the vortex line traces out during its escape from the metastable well. We explicitly show the influence of geometrical quantities on this volume by describing point vortex motion in the presence of an ellipse. It is argued that for the semiclassical description to hold the introduction of an additional geometric constraint, the distance of closest approach, is required. This constraint implies that the semiclassical description of vortex nucleation by tunneling at a boundary is in general not possible. Geometry dependence of the tunneling volume provides a means to verify experimental observation of vortex quantum tunneling in the superfluid Helium II.Comment: 4 pages, 2 figures, revised version to appear in Phys. Rev.
    corecore