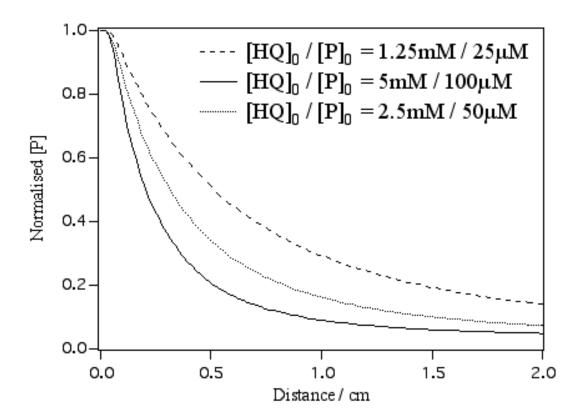
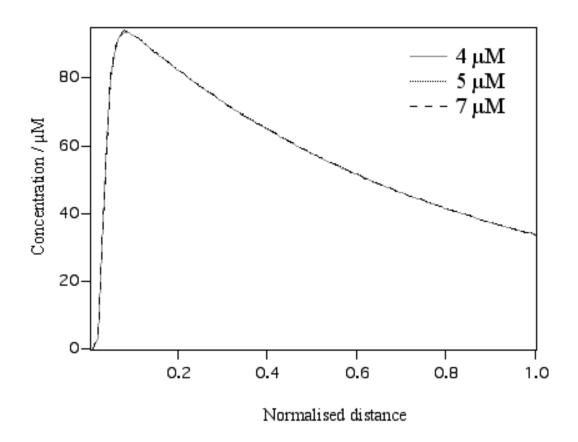
Supplementary information

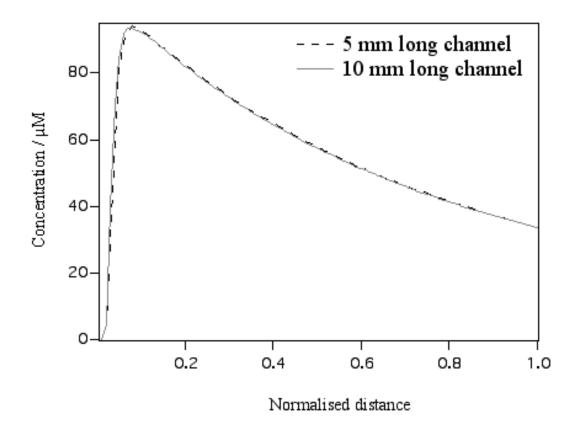
Electrochemical multi-tagging of cysteinyl peptides during microspray mass spectrometry: numerical simulation of consecutive reactions in a microchannel


Loïc Dayon, Jacques Josserand and Hubert H. Girault*[a]

[a] Prof. H.H. Girault, L. Dayon, Dr. J. Josserand


Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Fax (+41) 21-693-36-67


E-mail: hubert.girault@epfl.ch

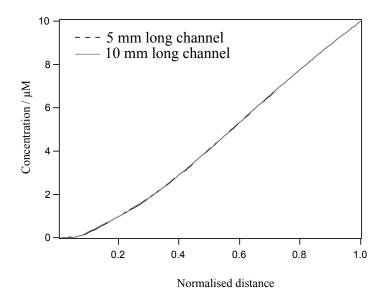

Figure S1. Kinetics of the tagging (evolution of $[P] / [P]_0$) for several initial concentrations of HQ and P in the case of a three-cysteine-containing biomolecule. The ratio $[HQ]_0 / [P]_0$ is kept constant.

Figure S2. Meshing validation by comparison of BQ concentration along the channel with main mesh size of 4 μm , 5 μm and 7 μm .

Figure S3. Scaling validation by comparison of BQ concentrations along the channel for a scaling by 2 (channel length of 10 mm) and by 4 (channel length of 5 mm). The flow rate of the fluid was adapted to conserve the flux of species.

Figure S4. Scaling validation by comparison of PQ_3 concentrations (three-cysteine-containing target simulation) along the channel for a scaling by 2 (channel length of 10 mm) and by 4 (channel length of 5 mm). The flow rate of the fluid was adapted to conserve the flux of species.

HQ	BQ	P	PQ_1	PQ_2	PQ_3	PQ_4	PQ_5
$D_Q \nabla \alpha \nabla \beta$	$-\alpha k_{\rm red}\beta$						
+αν∇β							
$+\alpha k_{\rm ox}\beta$							
$-\alpha k_{\rm ox}\beta$	$D_Q \nabla \alpha \nabla \beta$						
	$+\alpha\nu\nabla\beta$						
	$+\alpha k_{\rm red}\beta$						
	$+\alpha k_1 c_P \beta$						
	$+\alpha k_2 c_{PQ_1} \beta$						
	$+\alpha k_3 c_{PQ_2} \beta$						
	$+\alpha k_4 c_{PQ^3} \beta$						
	$+\alpha k_5 c_{PQ4} \beta$						
		$D_P \nabla \alpha \nabla \beta$					
		$+\alpha v\nabla \beta$					
		$+\alpha k_1 c_{BQ} \beta$					
		$-\alpha k_1 c_{BQ} \beta$	$D_P \nabla \alpha \nabla \beta$				
			$+\alpha v \nabla \beta$				
			$+\alpha k_2 c_{BQ} \beta$				
			$-\alpha k_2 c_{BQ} \beta$	$D_P \nabla \alpha \nabla \beta$			
				$+\alpha v \nabla \beta$			
				$+\alpha k_3 c_{BQ} \beta$			
				$-\alpha k_3 c_{BQ} \beta$	$D_P \nabla \alpha \nabla \beta$		
					$+\alpha v \nabla \beta$		
					$+\alpha k_4 c_{BQ} \beta$		
					$-\alpha k_4 c_{\rm BQ} \beta$	$D_P \nabla \alpha \nabla \beta$	
						$+\alpha v\nabla\beta$	
						$+\alpha k_5 c_{BQ} \beta$	
						$-\alpha k_5 c_{BQ} \beta$	$D_P \nabla \alpha \nabla \beta$
							$+\alpha v \nabla \beta$

Figure S5. The M_{ij} steady state matrix is described. All the gradients are written in a nabla form ∇ . The function β is the interpolation function of the unknown. The position in the matrix of the reaction terms is chosen to maximize the weight of the diagonal.