3,925 research outputs found

    Ab-initio calculation of the effect of stress on the chemical activity of graphene

    Get PDF
    Graphene layers are stable, hard, and relatively inert. We study how tensile stress affects σ\sigma and π\pi bonds and the resulting change in the chemical activity. Stress affects more strongly π\pi bonds that can become chemically active and bind to adsorbed species more strongly. Upon stretch, single C bonds are activated in a geometry mixing 120o120^{o} and 90o90^{o}; an intermediate state between sp2sp^{2} and sp3sp^{3} bonding. We use ab-initio density functional theory to study the adsorption of hydrogen on large clusters and 2D periodic models for graphene. The influence of the exchange-correlation functional on the adsorption energy is discussed

    X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x

    Full text link
    Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1, 2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS). The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3 and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were identified and they do not change with etching time. The Binding Energy of the Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a positive chemical shift in the core levels. On the other hand, analysis of Valence Band spectra showed that the contribution of the Nb 4d states slightly decreased while the contribution of the B 2p(pi) states increased as the boron content increased. As a consequence, the electronic and superconducting properties were substantially modified, in good agreement with band-structure calculations.Comment: 10 pages, 7 figures, 1 tabl

    Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides

    Full text link
    The effective quantum pseudospin-1/2 model for interacting rare-earth magnetic moments, which are locally described with atomic doublets, is studied theoretically for magnetic pyrochlore oxides. It is derived microscopically for localized Pr^{3+} 4f moments in Pr_2TM_2O_7 (TM = Zr, Sn, Hf, and Ir) by starting from the atomic non-Kramers magnetic doublets and performing the strong-coupling perturbation expansion of the virtual electron transfer between the Pr 4f and O 2p electrons. The most generic form of the nearest-neighbor anisotropic superexchange pseudospin-1/2 Hamiltonian is also constructed from the symmetry properties, which is applicable to Kramers ions Nd^{3+}, Sm^{3+}, and Yb^{3+} potentially showing large quantum effects. The effective model is then studied by means of a classical mean-field theory and the exact diagonalization on a single tetrahedron and on a 16-site cluster. These calculations reveal appreciable quantum fluctuations leading to quantum phase transitions to a quadrupolar state as a melting of spin ice for the Pr^{3+} case. The model also shows a formation of cooperative quadrupole moment and pseudospin chirality on tetrahedrons. A sign of a singlet quantum spin ice is also found in a finite region in the space of coupling constants. The relevance to the experiments is discussed.Comment: 18 pages including 14 figures; Comparison with the magnetization curve on Pr2Ir2O7 included; to appear in Phys. Rev.

    Structure and optical properties of high light output halide scintillators

    Full text link
    Structural and optical properties of several high light output halide scintillators and closely related materials are presented based on first principles calculations. The optical properties are based on the Engel-Vosko generalized gradient approximation and the recently developed density functional of Tran and Blaha. The materials investigated are BaBr2_2, BaIBr, BaCl2_2, BaF2_2, BaI2_2, BiI3_3, CaI2_2, Cs2LiYCl_2LiYCl_6,CsBa, CsBa_2BrBr_5,CsBa, CsBa_2II_5,K, K_2LaBrLaBr_5,K, K_2LaClLaCl_5,K,K_2LaILaI_5,LaBr, LaBr_3,LaCl, LaCl_3,SrBr, SrBr_2,andYI, and YI_3.ForcomparisonresultsarepresentedfortheoxideCdWO. For comparison results are presented for the oxide CdWO_4.WefindthattheTranBlahafunctionalgivesgreatlyimprovedbandgapsandopticalpropertiesinthisclassofmaterials.Furthermore,wefindthatunlikeCdWO. We find that the Tran Blaha functional gives greatly improved band gaps and optical properties in this class of materials. Furthermore, we find that unlike CdWO_4$, most of these halides are highly isotropic from an optical point of view even though in many cases the crystal structures and other properties are not. This general result is rationalized in terms of halide chemistry. Implications for the development of ceramic halide scintillators are discussed

    When hot water freezes before cold

    Get PDF
    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. They are concentrated ahead of the freezing front by zone refining in water that has not been heated, reduce the temperature of the freezing front, and thereby reduce the temperature gradient and heat flux, slowing the progress of the front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.Comment: 7 pages, 1 figur

    Ground state of two unlike charged colloids: An analogy with ionic bonding

    Full text link
    In this letter, we study the ground state of two spherical macroions of identical radius, but asymmetric bare charge ((Q_{A}>Q_{B})). Electroneutrality of the system is insured by the presence of the surrounding divalent counterions. Using Molecular Dynamics simulations within the framework of the primitive model, we show that the ground state of such a system consists of an overcharged and an undercharged colloid. For a given macroion separation the stability of these ionized-like states is a function of the difference ((\sqrt{N_{A}}-\sqrt{N_{B}})) of neutralizing counterions (N_{A}) and (N_{B}). Furthermore the degree of ionization, or equivalently, the degree of overcharging, is also governed by the distance separation of the macroions. The natural analogy with ionic bonding is briefly discussed.Comment: published versio

    Realizing Colloidal Artificial Ice on Arrays of Optical Traps

    Full text link
    We demonstrate how a colloidal version of artificial ice can be realized on optical trap lattices. Using numerical simulations, we show that this system obeys the ice rules and that for strong colloid-colloid interactions, an ordered ground state appears. We show that the ice rule ordering can occur for systems with as few as twenty-four traps and that the ordering transition can be observed at constant temperature by varying the barrier strength of the traps.Comment: 4 pages, 3 postscript figures; version to appear in Phys. Rev. Let

    Density-functional theory investigation of oxygen adsorption at Pd(11N)(N=3,5,7) vicinal surfaces

    Full text link
    We present a density-functional theory study addressing the on-surface adsorption of oxygen at the Pd(11N) (N =3,5,7) vicinal surfaces, which exhibit (111) steps and (100) terraces of increasing width. We find the binding to be predominantly governed by the local coordination at the adsorption site. This leads to very similar bonding properties at the threefold step sites of all three vicinal surfaces, while the binding at the central fourfold hollow site in the four atomic row terrace of Pd(117) is already very little disturbed by the presence of the neighboring steps.Comment: 9 pages including 4 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Electronic and magnetic properties of the ionic Hubbard model on the striped triangular lattice at 3/4 filling

    Get PDF
    We report a detailed study of a model Hamiltonian which exhibits a rich interplay of geometrical spin frustration, strong electronic correlations, and charge ordering. The character of the insulating phase depends on the magnitude of Delta/|t| and on the sign of t. We find a Mott insulator for Delta >> U >> |t|; a charge transfer insulator for U >> \Delta >> |t|; and a correlated covalent insulator for U >> \Delta ~ |t|. The charge transfer insulating state is investigated using a strong coupling expansion. The frustration of the triangular lattice can lead to antiferromagnetism or ferromagnetism depending on the sign of the hopping matrix element, t. We identify the "ring" exchange process around a triangular plaquette which determines the sign of the magnetic interactions. Exact diagonalization calculations are performed on the model for a wide range of parameters and compared to the strong coupling expansion. The regime U >> \Delta ~ |t| and t<0 is relevant to Na05CoO2. The calculated optical conductivity and the spectral density are discussed in the light of recent experiments on Na05CoO2.Comment: 15 pages, 15 figure

    Critical Temperature Tc and Charging Energy Ec between B-B layers of Superconducting diboride materials MgB2 in 3D JJA model

    Full text link
    The diboride materials MB2 (M = Mg, Be, Pb, etc.) are discussed on the basis of the 3D Josephson junction array (JJA) model due to Kawabata-Shenoy-Bishop, in terms of the B-B layers in the diborides analogous to the Cu-O ones in the cuprates. We propose a possibility of superconducting materials with the MgB2-type structure which exhibit higher critical temperature Tc over 39K of MgB2. We point out a role of interstitial ionic atoms (e.g., Mg in MgB2) as capacitors between the B-B layers, which reduce the charging coupling energy in JJA.Comment: 3 pages, 1 figure included; to be published in J. Phys. Soc. Jpn. 70, No.10 (2001
    corecore