3,925 research outputs found
Ab-initio calculation of the effect of stress on the chemical activity of graphene
Graphene layers are stable, hard, and relatively inert. We study how tensile
stress affects and bonds and the resulting change in the
chemical activity. Stress affects more strongly bonds that can become
chemically active and bind to adsorbed species more strongly. Upon stretch,
single C bonds are activated in a geometry mixing and ; an
intermediate state between and bonding. We use ab-initio
density functional theory to study the adsorption of hydrogen on large clusters
and 2D periodic models for graphene. The influence of the exchange-correlation
functional on the adsorption energy is discussed
X-ray photoelectron spectroscopy studies of non-stoichiometric superconducting NbB2+x
Polycrystalline samples of NbB2+x with nominal composition (B/Nb) = 2.0, 2.1,
2.2, 2.3, 2.4 and 2.5 were studied by X-ray photoelectron spectroscopy (XPS).
The spectra revealed Nb and B oxides on the surface of the samples, mainly B2O3
and Nb2O5. After Ar ion etching the intensity of Nb and B oxides decreased. The
Nb 3d5/2 and B 1s core levels associated with the chemical states (B/Nb) were
identified and they do not change with etching time. The Binding Energy of the
Nb 3d5/2 and B 1s core levels increase as boron content increases, suggesting a
positive chemical shift in the core levels. On the other hand, analysis of
Valence Band spectra showed that the contribution of the Nb 4d states slightly
decreased while the contribution of the B 2p(pi) states increased as the boron
content increased. As a consequence, the electronic and superconducting
properties were substantially modified, in good agreement with band-structure
calculations.Comment: 10 pages, 7 figures, 1 tabl
Quantum fluctuations in the effective pseudospin-1/2 model for magnetic pyrochlore oxides
The effective quantum pseudospin-1/2 model for interacting rare-earth
magnetic moments, which are locally described with atomic doublets, is studied
theoretically for magnetic pyrochlore oxides. It is derived microscopically for
localized Pr^{3+} 4f moments in Pr_2TM_2O_7 (TM = Zr, Sn, Hf, and Ir) by
starting from the atomic non-Kramers magnetic doublets and performing the
strong-coupling perturbation expansion of the virtual electron transfer between
the Pr 4f and O 2p electrons. The most generic form of the nearest-neighbor
anisotropic superexchange pseudospin-1/2 Hamiltonian is also constructed from
the symmetry properties, which is applicable to Kramers ions Nd^{3+}, Sm^{3+},
and Yb^{3+} potentially showing large quantum effects. The effective model is
then studied by means of a classical mean-field theory and the exact
diagonalization on a single tetrahedron and on a 16-site cluster. These
calculations reveal appreciable quantum fluctuations leading to quantum phase
transitions to a quadrupolar state as a melting of spin ice for the Pr^{3+}
case. The model also shows a formation of cooperative quadrupole moment and
pseudospin chirality on tetrahedrons. A sign of a singlet quantum spin ice is
also found in a finite region in the space of coupling constants. The relevance
to the experiments is discussed.Comment: 18 pages including 14 figures; Comparison with the magnetization
curve on Pr2Ir2O7 included; to appear in Phys. Rev.
Structure and optical properties of high light output halide scintillators
Structural and optical properties of several high light output halide
scintillators and closely related materials are presented based on first
principles calculations. The optical properties are based on the Engel-Vosko
generalized gradient approximation and the recently developed density
functional of Tran and Blaha. The materials investigated are BaBr, BaIBr,
BaCl, BaF, BaI, BiI, CaI, Cs_6_2_5_2_5_2_5_2_5_2_5_3_3_2_3_4_4$, most of these halides are highly isotropic from an
optical point of view even though in many cases the crystal structures and
other properties are not. This general result is rationalized in terms of
halide chemistry. Implications for the development of ceramic halide
scintillators are discussed
When hot water freezes before cold
I suggest that the origin of the Mpemba effect (the freezing of hot water
before cold) is freezing-point depression by solutes, either gaseous or solid,
whose solubility decreases with increasing temperature so that they are removed
when water is heated. They are concentrated ahead of the freezing front by zone
refining in water that has not been heated, reduce the temperature of the
freezing front, and thereby reduce the temperature gradient and heat flux,
slowing the progress of the front. I present a simple calculation of this
effect, and suggest experiments to test this hypothesis.Comment: 7 pages, 1 figur
Ground state of two unlike charged colloids: An analogy with ionic bonding
In this letter, we study the ground state of two spherical macroions of
identical radius, but asymmetric bare charge ((Q_{A}>Q_{B})). Electroneutrality
of the system is insured by the presence of the surrounding divalent
counterions. Using Molecular Dynamics simulations within the framework of the
primitive model, we show that the ground state of such a system consists of an
overcharged and an undercharged colloid. For a given macroion separation the
stability of these ionized-like states is a function of the difference
((\sqrt{N_{A}}-\sqrt{N_{B}})) of neutralizing counterions (N_{A}) and (N_{B}).
Furthermore the degree of ionization, or equivalently, the degree of
overcharging, is also governed by the distance separation of the macroions. The
natural analogy with ionic bonding is briefly discussed.Comment: published versio
Realizing Colloidal Artificial Ice on Arrays of Optical Traps
We demonstrate how a colloidal version of artificial ice can be realized on
optical trap lattices. Using numerical simulations, we show that this system
obeys the ice rules and that for strong colloid-colloid interactions, an
ordered ground state appears. We show that the ice rule ordering can occur for
systems with as few as twenty-four traps and that the ordering transition can
be observed at constant temperature by varying the barrier strength of the
traps.Comment: 4 pages, 3 postscript figures; version to appear in Phys. Rev. Let
Density-functional theory investigation of oxygen adsorption at Pd(11N)(N=3,5,7) vicinal surfaces
We present a density-functional theory study addressing the on-surface
adsorption of oxygen at the Pd(11N) (N =3,5,7) vicinal surfaces, which exhibit
(111) steps and (100) terraces of increasing width. We find the binding to be
predominantly governed by the local coordination at the adsorption site. This
leads to very similar bonding properties at the threefold step sites of all
three vicinal surfaces, while the binding at the central fourfold hollow site
in the four atomic row terrace of Pd(117) is already very little disturbed by
the presence of the neighboring steps.Comment: 9 pages including 4 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Electronic and magnetic properties of the ionic Hubbard model on the striped triangular lattice at 3/4 filling
We report a detailed study of a model Hamiltonian which exhibits a rich
interplay of geometrical spin frustration, strong electronic correlations, and
charge ordering. The character of the insulating phase depends on the magnitude
of Delta/|t| and on the sign of t. We find a Mott insulator for Delta >> U >>
|t|; a charge transfer insulator for U >> \Delta >> |t|; and a correlated
covalent insulator for U >> \Delta ~ |t|. The charge transfer insulating state
is investigated using a strong coupling expansion. The frustration of the
triangular lattice can lead to antiferromagnetism or ferromagnetism depending
on the sign of the hopping matrix element, t. We identify the "ring" exchange
process around a triangular plaquette which determines the sign of the magnetic
interactions. Exact diagonalization calculations are performed on the model for
a wide range of parameters and compared to the strong coupling expansion. The
regime U >> \Delta ~ |t| and t<0 is relevant to Na05CoO2. The calculated
optical conductivity and the spectral density are discussed in the light of
recent experiments on Na05CoO2.Comment: 15 pages, 15 figure
Critical Temperature Tc and Charging Energy Ec between B-B layers of Superconducting diboride materials MgB2 in 3D JJA model
The diboride materials MB2 (M = Mg, Be, Pb, etc.) are discussed on the basis
of the 3D Josephson junction array (JJA) model due to Kawabata-Shenoy-Bishop,
in terms of the B-B layers in the diborides analogous to the Cu-O ones in the
cuprates.
We propose a possibility of superconducting materials with the MgB2-type
structure which exhibit higher critical temperature Tc over 39K of MgB2.
We point out a role of interstitial ionic atoms (e.g., Mg in MgB2) as
capacitors between the B-B layers, which reduce the charging coupling energy in
JJA.Comment: 3 pages, 1 figure included; to be published in J. Phys. Soc. Jpn. 70,
No.10 (2001
- …