23,387 research outputs found

    The Decay Lifetime of Polarized Fermions in Flight

    Get PDF
    Based on the parity violation in Standard model, we study the dependence of lifetime on the helicity of an initial-state fermion in weak interactions. It is pointed out that if the initial fermions in the decays are longitudinally polarized, then the decay lifetime of left-handed polarized fermions is different from that of right-handed polarized fermions in flight with a same velocity in a same inertial system.Comment: 7 pages, Late

    New contention resolution schemes for WiMAX

    Get PDF
    Abstract—The use of Broadband Wireless Access (BWA) technology is increasing due to the use of Internet and multimedia applications with strict requirements of end–to–end delay and jitter, through wireless devices. The IEEE 802.16 standard, which defines the physical (PHY) and the medium access control (MAC) layers, is one of the BWA standards. Its MAC layer is centralized basis, where the Base Station (BS) is responsible for assigning the needed bandwidth for each Subscriber Station (SS), which requests bandwidth competing between all of them. The standard defines a contention resolution process to resolve the potential occurrence of collisions during the requesting process. In this paper, we propose to modify the contention resolution process to improve the network performance, including end–to–end delay and throughput

    Large magnetic penetration depth and thermal fluctuations in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal

    Get PDF
    We have measured the temperature dependence of the absolute value of the magnetic penetration depth λ(T)\lambda(T) in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal using a low-temperature magnetic force microscope (MFM). We obtain λab\lambda_{ab}(0)≈\approx1000 nm via extrapolating the data to T=0T = 0. This large λ\lambda and pronounced anisotropy in this system are responsible for large thermal fluctuations and the presence of a liquid vortex phase in this low-temperature superconductor with critical temperature of 11 K, consistent with the interpretation of the electrical transport data. The superconducting parameters obtained from λ\lambda and coherence length Ο\xi place this compound in the extreme type \MakeUppercase{\romannumeral 2} regime. Meissner responses (via MFM) at different locations across the sample are similar to each other, indicating good homogeneity of the superconducting state on a sub-micron scale

    λϕ4\lambda\phi^4 model and Higgs mass in standard model calculated by Gaussian effective potential approach with a new regularization-renormalization method

    Full text link
    Basing on new regularization-renormalization method, the λϕ4\lambda\phi^4 model used in standard model is studied both perturbatively and nonperturbatively (by Gaussian effective potential). The invariant property of two mass scales is stressed and the existence of a (Landau) pole is emphasized. Then after coupling with the SU(2)×\timesU(1) gauge fields, the Higgs mass in standard model (SM) can be calculated as mH≈m_H\approx138GeV. The critical temperature (TcT_c) for restoration of symmetry of Higgs field, the critical energy scale (ÎŒc\mu_c, the maximum energy scale under which the lower excitation sector of the GEP is valid) and the maximum energy scale (ÎŒmax\mu_{max}, at which the symmetry of the Higgs field is restored) in the standard model are Tc≈T_c\approx476 GeV, ÎŒc≈0.547×1015\mu_c\approx 0.547\times 10^{15}GeV and ÎŒmax⁡≈0.873×1015\mu_{\max}\approx 0.873 \times 10^{15} GeVv respectively.Comment: 12 pages, LaTex, no figur

    Decoupling of the superconducting and magnetic (structural) phase transitions in electron-doped BaFe2As2

    Full text link
    Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough temperature in these compounds is a necessary condition for superconductivity, but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c-axis) the superconducting dome exists over a limited range of values of the number of electrons added by doping (or values of the {a/c} ratio). By choosing which combination of dopants are used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of low temperature superconducting dome

    Physical and magnetic properties of Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 single crystals

    Full text link
    Single crystals of Ba(Fe1−x_{1-x}Rux_x)2_2As2_2, x<0.37x<0.37, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe2_2As2_2 at 134 K is suppressed monotonically by Ru doping, but, unlike doping with TM=Co, Ni, Cu, Rh or Pd, the coupled transition seen in the parent compound does not detectably split into two separate ones. Superconductivity is stabilized at low temperatures for x>0.2x>0.2 and continues through the highest doping levels we report. The superconducting region is dome like, with maximum Tc_c (∌16.5\sim16.5 K) found around x∌0.29x\sim 0.29. A phase diagram of temperature versus doping, based on electrical transport and magnetization measurements, has been constructed and compared to those of the Ba(Fe1−x_{1-x}TMx_x)2_2As2_2 (TM=Co, Ni, Rh, Pd) series as well as to the temperature-pressure phase diagram for pure BaFe2_2As2_2. Suppression of the structural/magnetic phase transition as well as the appearance of superconductivity is much more gradual in Ru doping, as compared to Co, Ni, Rh and Pd doping, and appears to have more in common with BaFe2_2As2_2 tuned with pressure; by plotting TS/TmT_S/T_m and TcT_c as a function of changes in unit cell dimensions, we find that changed in the c/ac/a ratio, rather than changes in cc, aa or V, unify the T(p)T(p) and T(x)T(x) phase diagrams for BaFe2_2As2_2 and Ba(Fe1−x_{1-x}Rux_x)2_2As2_2 respectively.Comment: 16 pages, 10 figure

    Building one molecule from a reservoir of two atoms

    Get PDF
    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits
    • 

    corecore