622 research outputs found

    CoA protects against the deleterious effects of caloric overload in Drosophila

    Get PDF
    We developed a Drosophila model of T2D in which high sugar (HS) feeding leads to insulin resistance. In this model, adipose TG storage is protective against fatty acid toxicity and diabetes. Initial biochemical and gene expression studies suggested that deficiency in CoA might underlie reduced TG synthesis in animals during chronic HS feeding. Focusing on the Drosophila fat body (FB), which is specialized for TG storage and lipolysis, we undertook a series of experiments to test the hypothesis that CoA could protect against the deleterious effects of caloric overload. Quantitative metabolomics revealed a reduction in substrate availability for CoA synthesis in the face of an HS diet. Further reducing CoA synthetic capacity by expressing FB-specific RNAi targeting pantothenate kinase (PK orfumble) or phosphopantothenoylcysteine synthase (PPCS) exacerbated HS-diet-induced accumulation of FFAs. Dietary supplementation with pantothenic acid (vitamin B5, a precursor of CoA) was able to ameliorate HS-diet-induced FFA accumulation and hyperglycemia while increasing TG synthesis. Taken together, our data support a model where free CoA is required to support fatty acid esterification and to protect against the toxicity of HS diets

    The Phytogeographical Significance of Some Rare Plants at Back Bay

    Get PDF
    The Back Bay region has long been recognized for its many species which reach either their northern or southern limits there. The eminent Harvard botanist M.L. Fernald collected extensively in the Back Bay region during the late 1930\u27s and early 1940\u27s. He postulated the Back Bay area provided a unique opportunity for the migration of fresh and brackish water species through a series of interconnected or neighboring marshes and pools. His collections document the presence of several species which we now consider extirpated. Of especial interest are genera with vicarious species pairs, that is, one area of overlap between wide-ranging species and southern species is at Back Bay. We present information on two such pairs: Lilaeopsis carolinensisand Lilaeopsis chinensis (wide-ranging); and Lippia nodiflora (southern) and Lippia lanceolata (wide-ranging). In addition we discuss species which reach their northern or southern limits at Back Bay. Examples include: Limosella subulata (Scrophulariaceae), a northern species which apparently has been extirpated, and Juncus megacephalus (Juncaceae), an endemic of the southeastern United States which is abundant near its northern limit at Back Bay

    Similar effects of high-fructose and high-glucose feeding in a Drosophila model of obesity and diabetes

    Get PDF
    As in mammals, high-sucrose diets lead to obesity and insulin resistance in the model organism Drosophila melanogaster (called Drosophila hereafter). To explore the relative contributions of glucose and fructose, sucrose’s component monosaccharides, we compared their effects on larval physiology. Both sugars exhibited similar effects to sucrose, leading to obesity and hyperglycemia. There were no striking differences resulting from larvae fed high glucose versus high fructose. Some small but statistically significant differences in weight and gene expression were observed that suggest Drosophila is a promising model system for understanding monosaccharide-specific effects on metabolic homeostasis.</div

    1H, 13C, and 15N resonance assignments for the tandem PHD finger motifs of human CHD4

    Get PDF
    The plant homeodomain (PHD) zinc finger is a structural motif of about 40–60 amino acid residues found in many eukaryotic proteins that are involved in chromatin-mediated gene regulation. The human chromodomain helicase DNA binding protein 4 (CHD4) is a multi-domain protein that harbours, at its N-terminal end, a pair of PHD finger motifs (dPHD) connected by a ~30 amino acid linker. This tandem PHD motif is thought to be involved in targeting CHD4 to chromatin via its interaction with histone tails. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignment of the entire dPHD by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for the determination of the structure, dynamics and histone-binding properties of this tandem domain pair

    Variation in Establishment Success for American Mistletoe [\u3ci\u3ePhoradendron leucarpum\u3c/i\u3e (Raf.) Reveal & M.C. Johnst. (Viscaceae)] Appears Most Likely to Predict its Distribution in Virginia and North Carolina, United States

    Get PDF
    Dispersal limitation and variation in habitat suitability may determine an association of American mistletoe [Phoradendron leucarpum (Raf.) Reveal & M.C. Johnst. (Viscaceae)] with forested wetlands in Virginia and North Carolina, United States. Here, we first tested the alternative hypothesis that variation in host availability drives this habitat relationship. We used a generalized linear model to show a positive effect of forested wetland habitat on American mistletoe occurrence after accounting for both variation in host availability and differences among regions in host use. We then used seed sowing experiments to quantify how light availability and flood regime determine the viability of American mistletoe, allowing us to evaluate the potential for establishment limitation to determine this habitat relationship. Light availability predicted establishment rates but % canopy openness did not predict seed germination rates. Thus, variation in the ability for American mistletoe to establish across forested habitat types with different local light availabilities is a potentially important mechanism in determining its distribution

    Morphology Of Striga Forbesii And Preliminary Screening For Resistance In Sorghum

    Get PDF
    Striga forbesii Benth can be a serious pest problem on sorghum in Southern Africa. Its morphology, as found in the region, was described with the mention of a very small population on the species having an unusual floral form with strongly exerted style and stigma. It thus could be possible that there is some outcrossing in this predominantly autogamous species. The species produces up to 24,654 seeds per plant, and its seed production was compared with that of S. asiatica. Observation nursery screening showed that between 2.0 and 20.0 (%) germplasm accessions, from Zimbabwe, Botswana Swaziland, Lesotho and Angola, have resistance to S. forbesii. In addition, only 6.0 (%) from the Alad nursery and 3.2 (%) from the Karper nursery, which were introduced into the region, showed resistance. Preliminary results from advanced screening trials significant differential reactions to S. forbesii attack among sorghum varieties. Using the modified checkerboard design, five varieties, namely SAR 29, SAR 33, SAR 19, SAR 35 and SAR 37, showed good levels of tolerance of resistance to S. forbesii. The different reactions of susceptibility and resistance or tolerance were discussed relative to the test varieties

    Striga identification and control handbook

    Get PDF

    Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.

    Get PDF
    The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn(1-x)Mg(x)O thickness to ensure that the Schottky barrier is spatially removed from the p-n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn(1-x)Mg(x)O films with increasing thickness. This work therefore shows that the Zn(1-x)Mg(x)O window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS.This work was supported by EPSRC of the UK (award number RG3717)This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/am5058663

    Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals.

    Get PDF
    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures.This is the author's accepted manuscript and will be under embargo until the 5th of April 2015. The final version is published by NPG in Nature Materials here: http://www.nature.com/nmat/journal/v13/n11/full/nmat4093.html
    • …
    corecore