9,227 research outputs found
Systematic Errors in Cosmic Microwave Background Interferometry
Cosmic microwave background (CMB) polarization observations will require
superb control of systematic errors in order to achieve their full scientific
potential, particularly in the case of attempts to detect the B modes that may
provide a window on inflation. Interferometry may be a promising way to achieve
these goals. This paper presents a formalism for characterizing the effects of
a variety of systematic errors on interferometric CMB polarization
observations, with particular emphasis on estimates of the B-mode power
spectrum. The most severe errors are those that couple the temperature
anisotropy signal to polarization; such errors include cross-talk within
detectors, misalignment of polarizers, and cross-polarization. In a B mode
experiment, the next most serious category of errors are those that mix E and B
modes, such as gain fluctuations, pointing errors, and beam shape errors. The
paper also indicates which sources of error may cause circular polarization
(e.g., from foregrounds) to contaminate the cosmologically interesting linear
polarization channels, and conversely whether monitoring of the circular
polarization channels may yield useful information about the errors themselves.
For all the sources of error considered, estimates of the level of control that
will be required for both E and B mode experiments are provided. Both
experiments that interfere linear polarizations and those that interfere
circular polarizations are considered. The fact that circular experiments
simultaneously measure both linear polarization Stokes parameters in each
baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
The effect of point sources on satellite observations of the cosmic microwave background
We study the effect of extragalactic point sources on satellite observations
of the cosmic microwave background (CMB). In order to separate the
contributions due to different foreground components, a maximum-entropy method
is applied to simulated observations by the Planck Surveyor satellite. In
addition to point sources, the simulations include emission from the CMB and
the kinetic and thermal Sunyaev-Zel'dovich (SZ) effects from galaxy clusters,
as well as Galactic dust, free-free and synchrotron emission. We find that the
main input components are faithfully recovered and, in particular, that the
quality of the CMB reconstruction is only slightly reduced by the presence of
point sources. In addition, we find that it is possible to recover accurate
point source catalogues at each of the Planck Surveyor observing frequencies.Comment: 12 pages, 9 figures, submitted to MNRA
Cosmological applications of a wavelet analysis on the sphere
The cosmic microwave background (CMB) is a relic radiation of the Big Bang
and as such it contains a wealth of cosmological information. Statistical
analyses of the CMB, in conjunction with other cosmological observables,
represent some of the most powerful techniques available to cosmologists for
placing strong constraints on the cosmological parameters that describe the
origin, content and evolution of the Universe. The last decade has witnessed
the introduction of wavelet analyses in cosmology and, in particular, their
application to the CMB. We review here spherical wavelet analyses of the CMB
that test the standard cosmological concordance model. The assumption that the
temperature anisotropies of the CMB are a realisation of a statistically
isotropic Gaussian random field on the sphere is questioned. Deviations from
both statistical isotropy and Gaussianity are detected in the reviewed works,
suggesting more exotic cosmological models may be required to explain our
Universe. We also review spherical wavelet analyses that independently provide
evidence for dark energy, an exotic component of our Universe of which we know
very little currently. The effectiveness of accounting correctly for the
geometry of the sphere in the wavelet analysis of full-sky CMB data is
demonstrated by the highly significant detections of physical processes and
effects that are made in these reviewed works.Comment: 17 pages, 8 figures; JFAA invited review, in pres
Filtering techniques for the detection of Sunyaev-Zel'dovich clusters in multifrequency CMB maps
The problem of detecting Sunyaev-Zel'dovich (SZ) clusters in multifrequency
CMB observations is investigated using a number of filtering techniques. A
multifilter approach is introduced, which optimizes the detection of SZ
clusters on microwave maps. An alternative method is also investigated, in
which maps at different frequencies are combined in an optimal manner so that
existing filtering techniques can be applied to the single combined map. The SZ
profiles are approximated by the circularly-symmetric template , with and , where the core radius and the overall amplitude of the effect
are not fixed a priori, but are determined from the data. The background
emission is modelled by a homogeneous and isotropic random field, characterized
by a cross-power spectrum with . The
filtering methods are illustrated by application to simulated Planck
observations of a patch of sky in 10 frequency
channels. Our simulations suggest that the Planck instrument should detect
SZ clusters in 2/3 of the sky. Moreover, we find the catalogue
to be complete for fluxes mJy at 300 GHz.Comment: 12 pages, 7 figures; Corrected figures. Submitted to MNRA
Limits on Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array
We have used the Berkeley-Illinois-Maryland-Association (BIMA) millimeter
array outfitted with sensitive cm-wave receivers to search for Cosmic Microwave
Background (CMB) anisotropies on arcminute scales. The interferometer was
placed in a compact configuration which produces high brightness sensitivity,
while providing discrimination against point sources. Operating at a frequency
of 28.5 GHz, the FWHM primary beam of the instrument is 6.6 arcminutes. We have
made sensitive images of seven fields, five of which where chosen specifically
to have low IR dust contrast and be free of bright radio sources. Additional
observations with the Owens Valley Radio Observatory (OVRO) millimeter array
were used to assist in the location and removal of radio point sources.
Applying a Bayesian analysis to the raw visibility data, we place limits on CMB
anisotropy flat-band power Q_flat = 5.6 (+3.0 -5.6) uK and Q_flat < 14.1 uK at
68% and 95% confidence. The sensitivity of this experiment to flat band power
peaks at a multipole of l = 5470, which corresponds to an angular scale of
approximately 2 arcminutes. The most likely value of Q_flat is similar to the
level of the expected secondary anisotropies.Comment: 15 pages, 5 figures, LaTex, aas2pp4.sty, ApJ submitte
Trust and Risk Relationship Analysis on a Workflow Basis: A Use Case
Trust and risk are often seen in proportion to each other; as such, high trust may induce low risk and vice versa. However, recent research argues that trust and risk relationship is implicit rather than proportional. Considering that trust and risk are implicit, this paper proposes for the first time a novel approach to view trust and risk on a basis of a W3C PROV provenance data model applied in a healthcare domain. We argue that high trust in healthcare domain can be placed in data despite of its high risk, and low trust data can have low risk depending on data quality attributes and its provenance. This is demonstrated by our trust and risk models applied to the BII case study data. The proposed theoretical approach first calculates risk values at each workflow step considering PROV concepts and second, aggregates the final risk score for the whole provenance chain. Different from risk model, trust of a workflow is derived by applying DS/AHP method. The results prove our assumption that trust and risk relationship is implicit
- …