87,267 research outputs found
Discovery of a new supernova remnant G150.3+4.5
Large-scale radio continuum surveys have good potential for discovering new
Galactic supernova remnants (SNRs). Surveys of the Galactic plane are often
limited in the Galactic latitude of |b| ~ 5 degree. SNRs at high latitudes,
such as the Cygnus Loop or CTA~1, cannot be detected by surveys in such limited
latitudes. Using the available Urumqi 6 cm Galactic plane survey data, together
with the maps from the extended ongoing 6 cm medium latitude survey, we wish to
discover new SNRs in a large sky area. We searched for shell-like structures
and calculated radio spectra using the Urumqi 6 cm, Effelsberg 11 cm, and 21 cm
survey data. Radio polarized emission and evidence in other wavelengths are
also examined for the characteristics of SNRs. We discover an enclosed
oval-shaped object G150.3+4.5 in the 6 cm survey map. It is about 2.5 degree
wide and 3 degree high. Parts of the shell structures can be identified well in
the 11 cm, 21 cm, and 73.5 cm observations. The Effelsberg 21 cm total
intensity image resembles most of the structures of G150.3+4.5 seen at 6 cm,
but the loop is not closed in the northwest. High resolution images at 21 cm
and 73.5 cm from the Canadian Galactic Plane Survey confirm the extended
emission from the eastern and western shells of G150.3+4.5. We calculated the
radio continuum spectral indices of the eastern and western shells, which are
and between 6 cm and 21 cm, respectively.
The shell-like structures and their non-thermal nature strongly suggest that
G150.3+4.5 is a shell-type SNR. For other objects in the field of view,
G151.4+3.0 and G151.2+2.6, we confirm that the shell-like structure G151.4+3.0
very likely has a SNR origin, while the circular-shaped G151.2+2.6 is an HII
region with a flat radio spectrum, associated with optical filamentary
structure, H, and infrared emission.Comment: 5 pages, 3 figures, accepted for publication of Astronomy and
Astrophysic
Low frequency oscillations in total ozone measurements
Low frequency oscillations with periods of approximately one to two months are found in eight years of global grids of total ozone data from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The low frequency oscillations corroborate earlier analyses based on four years of data. In addition, both annual and seasonal one-point correlation maps based on the 8-year TOMS data are presented. The results clearly show a standing dipole in ozone perturbations, oscillating with 35 to 50 day periods over the equatorial Indian Ocean-west Pacific region. This contrasts with the eastward moving dipole reported in other data sets. The standing ozone dipole appears to be a dynamical feature associated with vertical atmospheric motions. Consistent with prior analyses based on lower stratospheric temperature fields, large-scale standing patterns are also found in the extratropics of both hemispheres, correlated with ozone fluctuations over the equatorial west Pacific. In the Northern Hemisphere, a standing pattern is observed extending from the tropical Indian Ocean to the north Pacific, across North America, and down to the equatorial Atlantic Ocean region. This feature is most pronounced in the NH summer
Simple scheme for two-qubit Grover search in cavity QED
Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R)
(2002)], we present an alternative way to implement the two-qubit Grover search
algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a
strong resonant classical field added, our method is insensitive to both the
cavity decay and thermal field, and doesn't require that the cavity remain in
the vacuum state throughout the procedure. Moreover, the qubit definitions are
the same for both atoms, which makes the experiment easier. The strictly
numerical simulation shows that our proposal is good enough to demonstrate a
two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.
The Effects of Halo Assembly Bias on Self-Calibration in Galaxy Cluster Surveys
Self-calibration techniques for analyzing galaxy cluster counts utilize the
abundance and the clustering amplitude of dark matter halos. These properties
simultaneously constrain cosmological parameters and the cluster
observable-mass relation. It was recently discovered that the clustering
amplitude of halos depends not only on the halo mass, but also on various
secondary variables, such as the halo formation time and the concentration;
these dependences are collectively termed assembly bias. Applying modified
Fisher matrix formalism, we explore whether these secondary variables have a
significant impact on the study of dark energy properties using the
self-calibration technique in current (SDSS) and the near future (DES, SPT, and
LSST) cluster surveys. The impact of the secondary dependence is determined by
(1) the scatter in the observable-mass relation and (2) the correlation between
observable and secondary variables. We find that for optical surveys, the
secondary dependence does not significantly influence an SDSS-like survey;
however, it may affect a DES-like survey (given the high scatter currently
expected from optical clusters) and an LSST-like survey (even for low scatter
values and low correlations). For an SZ survey such as SPT, the impact of
secondary dependence is insignificant if the scatter is 20% or lower but can be
enhanced by the potential high scatter values introduced by a highly correlated
background. Accurate modeling of the assembly bias is necessary for cluster
self-calibration in the era of precision cosmology.Comment: 13 pages, 5 figures, replaced to match published versio
Semiclassical quantization with bifurcating orbits
Bifurcations of classical orbits introduce divergences into semiclassical
spectra which have to be smoothed with the help of uniform approximations. We
develop a technique to extract individual energy levels from semiclassical
spectra involving uniform approximations. As a prototype example, the method is
shown to yield excellent results for photo-absorption spectra for the hydrogen
atom in an electric field in a spectral range where the abundance of
bifurcations would render the standard closed-orbit formula without uniform
approximations useless. Our method immediately applies to semiclassical trace
formulae as well as closed-orbit theory and offers a general technique for the
semiclassical quantization of arbitrary systems
Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering
Galaxy formation inside dark matter halos, as well as the halo formation
itself, can be affected by large-scale environments. Evaluating the imprints of
environmental effects on galaxy clustering is crucial for precise cosmological
constraints with data from galaxy redshift surveys. We investigate such an
environmental impact on both real-space and redshift-space galaxy clustering
statistics using a semi-analytic model derived from the Millennium Simulation.
We compare clustering statistics from original SAM galaxy samples and shuffled
ones with environmental influence on galaxy properties eliminated. Among the
luminosity-threshold samples examined, the one with the lowest threshold
luminosity (~0.2L_*) is affected by environmental effects the most, which has a
~10% decrease in the real-space two-point correlation function (2PCF) after
shuffling. By decomposing the 2PCF into five different components based on the
source of pairs, we show that the change in the 2PCF can be explained by the
age and richness dependence of halo clustering. The 2PCFs in redshift space are
found to change in a similar manner after shuffling. If the environmental
effects are neglected, halo occupation distribution modeling of the real-space
and redshift-space clustering may have a less than 6.5% systematic uncertainty
in constraining beta from the most affected SAM sample and have substantially
smaller uncertainties from the other, more luminous samples. We argue that the
effect could be even smaller in reality. In the Appendix, we present a method
to decompose the 2PCF, which can be applied to measure the two-point
auto-correlation functions of galaxy sub-samples in a volume-limited galaxy
sample and their two-point cross-correlation functions in a single run
utilizing only one random catalog.Comment: 13 pages, 6 figures, Accepted by AP
A Sino-German 6cm polarisation survey of the Galactic plane IX. HII regions
Large-scale radio continuum surveys provide data to get insights into the
physical properties of radio sources. HII regions are prominent radio sources
produced by thermal emission of ionised gas around young massive stars. We
identify and analyse HII regions in the Sino-German 6cm polarisation survey of
the Galactic plane. Objects with flat radio continuum spectra together with
infrared and/or Halpha emission were identified as HII regions. For HII regions
with small apparent sizes, we cross-matched the 6cm small-diameter source
catalogue with the radio HII region catalogue compiled by Paladini and the
infrared HII region catalogue based on the WISE data. Extended HII regions were
identified by eye by overlaying the Paladini and the WISE HII regions onto the
6cm survey images for coincidences. The TT-plot method was employed for
spectral index verification. A total of 401 HII regions were identified and
their flux densities were determined with the Sino-German 6cm survey data. In
the surveyed area, 76 pairs of sources are found to be duplicated in the
Paladini HII region catalogue, mainly due to the non-distinction of previous
observations with different angular resolutions, and 78 objects in their
catalogue are misclassified as HII regions, being actually planetary nebulae,
supernova remnants or extragalactic sources that have steep spectra. More than
30 HII regions and HII region candidates from our 6cm survey data, especially
extended ones, do not have counterparts in the WISE HII region catalogue, of
which 9 are identified for the first time. Based on the newly derived radio
continuum spectra and the evidence of infrared emission, the previously
identified SNRs G11.1-1.0, G20.4+0.1 and G16.4-0.5 are believed to be HII
regions.Comment: version after some minor corrections and language editing, full Table
2 - 5 will appear in CDS, accepted for publication in A&
Fiber Based Multiple-Access Optical Frequency Dissemination
We demonstrate a fiber based multiple-access optical frequency dissemination
scheme. Without using any additional laser sources, we reproduce the stable
disseminated frequency at an arbitrary point of fiber link. Relative frequency
stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber
network for highly-precision synchronization of optical frequency is made
possible by this method and its applications are discussed.Comment: 5 pages, 3 figure
- …