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Semiclassical quantization with bifurcating orbits
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Bifurcations of classical orbits introduce divergences into semiclassical spectra which have to be
smoothed with the help of uniform approximations. We develop a technique to extract individual
energy levels from semiclassical spectra involving uniform approximations. As a prototype example,
the method is shown to yield excellent results for photo-absorption spectra for the hydrogen atom in
an electric field in a spectral range where the abundance of bifurcations would render the standard
closed-orbit formula without uniform approximations useless. Our method immediately applies to
semiclassical trace formulae as well as closed-orbit theory and offers a general technique for the
semiclassical quantization of arbitrary systems.
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The correspondence between atomic spectra and clas-
sical orbits has been of fundamental interest and impor-
tance since the early days of quantum mechanics. The
“old” quantum theory suffered from the severe draw-
backs that the Bohr-Sommerfeld quantization rules can
only be applied to integrable systems, and, for atomic
systems, the Heisenberg principle for matrix elements
is silent about transition amplitudes between low-lying
and highly excited states. An important step towards a
deeper understanding of the intimate connection between
classical orbits and the quantum spectra was achieved
by the development of periodic orbit theory [1] and, as a
variant for the photo-excitation of atomic systems, closed
orbit theory [2, 3]. In these theories, the density of states
or photo-absorption spectra are given as the sum of two
terms, one a smoothly varying part (as a function of en-
ergy) and the other a superposition of sinusoidal modu-
lations. The frequencies, amplitudes, and phases of the
modulations are directly given in terms of classical pa-
rameters of the orbits.

Closed-orbit theory has proven a powerful tool for the
semiclassical interpretation of quantum spectra of, e.g.,
atoms in external magnetic and electric fields by explain-
ing the peaks in the Fourier-transform recurrence spectra
– qualitatively and even quantitatively – in terms of the
closed orbits of the underlying classical system [4, 5, 6].
However, more than a decade after the development of
closed-orbit theory the inverse procedure, i.e., the semi-
classical calculation of the eigenenergies and transition
amplitudes of individual states is still an unsolved prob-
lem. The reasons are twofold: Firstly, both closed-orbit
and periodic-orbit theory suffer from fundamental con-
vergence problems of the infinite orbit sums. Secondly,
in generic systems the orbits undergo bifurcations when
the energy is varied, and the semiclassical theories for iso-
lated orbits exhibit unphysical divergences at the bifur-
cation points. Both problems have been addressed sepa-
rately: Firstly, the harmonic inversion technique was in-
troduced as a method for semiclassical quantization [7, 8],
which allows one to overcome the convergence problems
of the closed orbit sum and to extract high-resolution
spectra from a finite set of classical orbits. Secondly,

in the vicinity of bifurcations the semiclassical approx-
imation for isolated orbits was replaced with a uniform
approximation describing all orbits involved in a bifurca-
tion collectively [9, 10].

In this Letter both ideas are combined for the first
time, i.e., we use both uniform approximations and har-
monic inversion techniques for the semiclassical calcula-
tion of high-resolution spectra. In the presence of uni-
form approximations, the classical scaling laws which
have been essential to all previous applications of the har-
monic inversion technique [8] are no longer valid. There-
fore, the harmonic inversion method must be general-
ized to handle the non-scaling functional form of uni-
form semiclassical approximations. It then gains a degree
of flexibility in the quantization of arbitrary systems no
other semiclassical quantization scheme has been able to
reach to date.

The novel method will be demonstrated by way of ex-
ample of the hydrogen atom in an electric field. As is
well known, the classical dynamics of this system is inte-
grable, which means that semiclassical energy eigenvalues
can be calculated with the help of the EBKM torus quan-
tization rules [11, 12]. However, when closed-orbit theory
is applied the hydrogen atom in an electric field exhibits
properties typical of mixed regular-chaotic systems as,
e.g., Rydberg atoms in a magnetic field or Hénon-Heiles
type systems. In particular, the closed orbits starting at
and returning to the nucleus undergo bifurcations as the
energy is varied. Contrary to the torus quantization, the
method introduced in this Letter is not restricted to the
Stark effect but can be applied to a large variety of sys-
tems with chaotic or mixed regular-chaotic classical dy-
namics. Furthermore, it can be used in connection with
periodic-orbit theory [1] as well as closed-orbit theory.

The classical dynamics of the Stark system has already
been discussed in detail [11]. For any energy, the electron
can go “uphill” against the direction of the electric field
until the external field and the Coulomb field make it re-
turn to the nucleus. Alternatively, the electron can leave
the nucleus in the “downhill” direction of the external
field. The downhill orbit is closed only for energies below
the Stark saddle point energy, ES = −2F 1/2, otherwise
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the electron will cross the Stark saddle and escape to in-
finity. In addition to these axial closed orbits, there are
non-axial orbits returning to the nucleus after k oscilla-
tions in the downhill direction and l > k oscillations in
the uphill direction. Each of these orbits is generated in
a bifurcation off the downhill orbit at a critical energy
Egen and destroyed in a collision with the uphill orbit at
Edest > Egen. Outside this energy range, they exist as
complex “ghost” orbits.

Closed-orbit theory associates modulations observed in
the quantum photo-absorption spectra of Rydberg atoms
in external fields with the classical closed orbits. The
quantum response function

g(E) =
∑

n

|〈i|D|n〉|2
E − En + iǫ

= 〈i|DG+
ED|i〉 , (1)

where |i〉 is the initial state, D the dipole operator and
G+

E the retarded Green’s function, is given as a smooth
background plus an oscillatory closed-orbit sum [2, 3, 13]

gosc(E) =
∑

co

Aco(E)eiSco(E) , (2)

where Sco is the action of a closed orbit (co) and Aco

a recurrence amplitude calculated from the monodromy
matrix of the orbit and its initial and final directions with
respect to the electric field. It includes a complex phase
given by the Maslov index. In the following we are using
atomic units, with h̄ = 1 and F0 = 5.14 × 109 V/cm the
unit of the electric field strength.

The most convincing semiclassical interpretation of
quantum spectra can be obtained by means of “scaled en-
ergy spectroscopy”: By rescaling the classical quantities
with suitable powers of, e.g., the electric field strength
F , the classical dynamics can be shown not to depend
on the energy E and the field strength F separately, but
only on the scaled energy Ẽ = EF−1/2. When recording
quantum states at a fixed scaled energy Ẽ as a function
of the scaling parameter w = F−1/4, each isolated closed
orbit contributes a sinusoidal modulation to the sum (2),
which can be extracted by a Fourier transform of the
quantum spectrum. Experimental scaled energy spectra
of atoms in electric fields have been analyzed in this way
[5, 6]. The analysis reveals strong evidence for closed
orbit bifurcations.

The simple semiclassical approximation embodied in
the closed-orbit formula (2) fails close to a bifurcation of
closed orbits, resulting in the divergence of the recurrence
amplitudes. To overcome this difficulty, the closed-orbit
terms for isolated orbits in (2) must be replaced with a
uniform approximation describing all orbits involved in
a bifurcation collectively. A uniform approximation suit-
able for regularizing the bifurcation of a non-axial orbit
off either the downhill or the uphill orbit was derived by
Gao and Delos [10] as well as Shaw and Robicheaux [14].
We will use a slightly modified version of their result that
gives the collective contribution of the axial and non-axial

orbits participating in a bifurcation in terms of their ac-
tions Sax and Snon and recurrence amplitudes Aax and
Anon as

Ψ(E) =

[ Anon

(1 + i)
I +

1

a

(

aAax +
1 + i√

2π
Anon

)]

eiSax (3)

where I is given in terms of the standard Fresnel integrals
C(x) and S(x) [15],

I = e−ia2/4

[

1 + i

2
− C

(

− a√
2π

)

− iS

(

− a√
2π

)]

,

(4)

and

a = ±2
√

Sax − Snon . (5)

The negative sign for a has to be chosen if the non-axial
orbit is a complex ghost orbit.

The high-resolution quantization by harmonic inver-
sion [7, 8] is based on the observation that by equating
the quantum recurrence function (1) to its semiclassical
approximation (2) – the smooth part can be neglected –
and taking the Fourier transform we obtain

−i
∑

n

dne−iEnt = C(t) (6)

with dn = |〈i|D|n〉|2 and

C(t) =
1

2π

∫

∞

−∞

dE
∑

co

Aco(E)eiSco(E)e−iEt . (7)

The quantization problem has thus been recast as the
problem of extracting the frequencies En and amplitudes
dn from a given time signal C(t) of the form (6), provided
the signal (7) can be calculated. In the case of a scaling
system the signal is given as a sum of δ functions.

While the uniform approximation (3) successfully
smoothes the divergences in (2), it spoils the classical
scaling properties [14]. Therefore, the Fourier transform
of a spectrum including uniform approximations cannot
be evaluated in terms of δ functions. In fact, for non-
scaling systems, there seems to be no way at all to com-
pute the integral (7) because, apart from the fact that
the classical quantities can always be calculated in a fi-
nite energy interval only, the integral can in general not
even be expected to converge. Therefore, neither by an-
alytical nor by numerical means will one be able to com-
pute a useful semiclassical signal from (7). The inclusion
of uniform approximations in semiclassical quantization
is thus a nontrivial and challenging task.

To solve the problem we resort to the observation made
in [16] that a band-limited signal, which only contains the
spectral information describing the quantum system in a
finite energy interval [Emin, Emax], can be obtained by
restricting the energy integral in (7) to this window. The
resulting signal

Cbl(t) =
1

2π

∫ Emax

Emin

gosc(E)e−iEtdE , (8)
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FIG. 1: Low-resolution semiclassical photo-absorption spec-
trum for the hydrogen atom in an electric field F = 51.4 V/cm
with initial state |1s0〉 and light polarized along the electric
field axis. The scaled truncation time is Tmax = 15 × 106.

where gosc(E) is in general a non-scaling function that
includes both contributions of isolated closed orbits and
uniform approximations, can be evaluated numerically by
standard methods. As it contains only a small number of
frequencies in the interval chosen, it can be processed in
a numerically stable way by conventional high-resolution
methods such as linear prediction or Padé approximants.
Contrary to previous methods for scaling systems, all
of which contained the analytic evaluation of an inte-
gral, the numerical integration imposes no restrictions on
the semiclassical response function occurring in the inte-
grand. Notice that our method cannot be applied in con-
nection with the original filter diagonalization algorithm
[8]. It is only the separation between a low-resolution fre-
quency filtering stage and a high-resolution harmonic in-
version stage introduced in [16] that allows for the present
generalization to arbitrary non-scaling semiclassical sig-
nals.

To demonstrate our method we investigate Stark spec-
tra of the hydrogen atom for transitions from the ground
state |1s0〉 to highly excited Rydberg states with light
polarized parallel to the electric field axis. The exter-
nal field strength is F = 10−8 a.u. =̂ 51.4 V/cm. The
high-resolution Stark spectrum is obtained in two steps:

Firstly, a low-resolution semiclassical spectrum is ob-

-6

-4

-2

0

2

4

6

-5.6 -5.4 -5.2 -5 -4.8 -4.6 -4.4 -4.2

10
6  〈1

s|
D

|n
〉2

104 E

(sc)

(qm)

(a)

-3

-2

-1

0

1

2

3

-4 -3.8 -3.6 -3.4 -3.2 -3
10

6  〈1
s|

D
|n

〉2

104 E

(sc)

(qm)

(b)

FIG. 2: High-resolution semiclassical (upper part) and quan-
tum (lower part, inverted) photo-absorption spectrum for the
hydrogen atom in an electric field F = 51.4 V/cm with ini-
tial state |1s0〉 and light polarized along the electric field
axis. The truncation time for the semiclassical spectrum is
Tmax = 40 × 106.

tained by truncating the closed-orbit sum (2) at a maxi-
mal period Tmax. The cut-off value for the periods should
not be chosen smaller than the signal length of the band-
limited signal (8) used for the harmonic inversion in
the second step of the procedure. The low-resolution
spectrum calculated with a scaled truncation time of
Tmax = 15 × 106 is presented in Fig. 1. In the lower en-
ergy range shown in Fig. 1(a), individual non-overlapping
n-manifolds can be observed. (We have n = 30 at
E ≈ −5.56 × 10−4.) In this region, the signal is suffi-
ciently long to resolve individual spectral lines, although
their precise determination from the plots remains diffi-
cult. In the higher energy range shown in Fig. 1(b), two,
three, or even four different n-manifolds overlap, leading
to a drastically increased spectral density. In this region
the semiclassical signal is evidently too short to discrim-
inate individual lines. It is important to note that the
possibility of computing the low-resolution spectrum de-
pends critically on the use of uniform approximations. If
it was calculated from isolated-orbit contributions only, a
dense sequence of bifurcation-induced divergences would
cover even the large-scale structure of the spectra. With
the low-resolution semiclassical spectrum (Fig. 1) at hand



4

the band-limited time signal (8) is now obtained by a nu-
merical Fourier transform of gosc(E). In that calculation
we used the signal length Tmax = 40 × 106 in order to
resolve individual levels in the region of overlapping n-
manifolds.

In the second step, the high-resolution semiclassical
spectrum is finally obtained by harmonic inversion of
the band-limited time signal (8). In Fig. 2 the semi-
classical spectrum is compared to the exact quantum
spectrum. The overall agreement between the semiclas-
sical and the quantum spectrum is excellent, although
for a few levels the comparison reveals discrepancies be-
tween the semiclassical and the quantum matrix ele-
ments. Note, in particular, the region of high spectral
density at E ≈ 3.2 × 10−4. In this region, groups of 3
nearly degenerate levels exist, some of which are well re-
solved semiclassically. At E ≈ −4.4 × 10−4, even closer
lines exist – they can hardly be discerned in the quan-
tum spectrum. These lines are not resolved semiclassi-
cally. Instead, the harmonic inversion yields single lines
with amplitudes equal to the sum of the two quantum
amplitudes. We are confident to fully resolve even these
states in the semiclassical spectrum when applying the
cross-correlation technique for harmonic inversion [8].

In the future it should also be possible to extend the
semiclassical spectrum to energies E > ES where the
classical motion is not completely bound, and to extract
the semiclassical widths of the Stark resonances. A par-
ticular challenge is posed by the region around the Stark
saddle point energy ES. Before the downhill orbit ceases
to exist at ES, it undergoes an infinite sequence of bifur-

cations, giving birth to non-axial orbits with arbitrarily
high uphill repetition numbers. If subsequent bifurca-
tions of a single orbit are too close, the uniform approx-
imation (3) is no longer appropriate. It must then be
replaced with a uniform approximation describing sev-
eral bifurcations collectively. The uniformization of an
infinite bifurcation cascade, in particular, remains an
open problem whose solution is required to semiclassi-
cally cross the saddle point energy.

In summary, we have extended the harmonic inversion
approach to semiclassical quantization to the quantiza-
tion of systems without a scaling property. The gen-
eralized method allows for the inclusion of uniform ap-
proximations into the quantization procedure. We have
demonstrated the effectiveness of our method by calculat-
ing a high-quality semiclassical spectrum for the hydro-
gen atom in an electric field in a spectral region where the
semiclassical approximation without uniform approxima-
tions would be completely useless due to the abundance
of bifurcations. With the modifications presented here,
the technique of quantization by harmonic inversion has
reached a stage where it does not impose any conditions
on the classical dynamics of the system under study ex-
cept that a semiclassical approximation to the response
function can be given. Besides uniform approximations,
any other non-standard semiclassical contributions such
as diffractive corrections can be included. Thus, the har-
monic inversion can now be regarded as a truly universal
tool for the semiclassical quantization of arbitrary sys-
tems.
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