1,185 research outputs found

    Strain Gradients in Epitaxial Ferroelectrics

    Get PDF
    X-ray analysis of ferroelectric thin layers of Ba1/2Sr1/2TiO3 with different thickness reveals the presence of internal strain gradients across the film thickness and allows us to propose a functional form for the internal strain profile. We use this to calculate the direct influence of strain gradient, through flexoelectric coupling, on the degradation of the ferroelectric properties of thin films with decreasing thickness, in excellent agreement with the observed behaviour. This work highlights the link between strain relaxation and strain gradients in epitaxial films, and shows the pressing need to avoid strain gradients in order to obtain thin ferroelectrics with bulk-like properties.Comment: 4 pages, 3 embedded figures (1 color), revTex

    The Catalina Real-time Transient Survey

    Get PDF
    The Catalina Real-time Transient Survey (CRTS) currently covers 33,000 deg^2 of the sky in search of transient astrophysical events, with time baselines ranging from 10 minutes to ~7 years. Data provided by the Catalina Sky Survey provides an unequaled baseline against which >4,000 unique optical transient events have been discovered and openly published in real-time. Here we highlight some of the discoveries of CRTS.Comment: To appear in proc. IAU Symp. 285, "New Horizons in Time Domain Astronomy", eds. E. Griffin et al., Cambridge Univ. Press (2012), 3 page

    Strain gradient induced polarization in SrTiO3 single crystals

    Full text link
    Piezoelectricity is inherent only in noncentrosymmetric materials, but a piezoelectric response can also be obtained in centrosymmetric crystals if subjected to inhomogeneous deformation. This phenomenon, known as flexoelectricity, affects the functional properties of insulators, particularly thin films of high permittivity materials. We have measured strain-gradient-induced polarization in single crystals of paraelectric SrTiO3_3 as a function of temperature and orientation down to and below the 105 K phase transition. Estimates were obtained for all the components of the flexoelectric tensor, and calculations based on these indicate that local polarization around defects in SrTiO3_3 may exceed the largest ferroelectric polarizations. A sign reversal of the flexoelectric response detected below the phase transition suggests that the ferroelastic domain walls of SrTiO3_3 may be polar.Comment: 4 pages, 3 figures, 1 tabl

    Cascade Simulations for the LHC Betatron Cleaning Insertion

    Get PDF
    A cascade calculation is done in the IR7 betatron cleaning insertion of LHC. It uses a detailed map of the primary losses and an accurate model of the straight section. One aim is to design a compact shielding which fits in the tight section of the tunnel. The same study allows to define radiation hardness properties of the equipment to be installed in the section and to locate areas of low activi ty for the installation of sensitive equipment

    Model Atmospheres for Irradiated Stars in pre-Cataclysmic Variables

    Full text link
    Model atmospheres have been computed for M dwarfs that are strongly irradiated by nearby hot companions. A variety of primary and secondary spectral types are explored in addition to models specific to four known systems: GD 245, NN Ser, AA Dor, and UU Sge. This work demonstrates that a dramatic temperature inversion is possible on at least one hemisphere of an irradiated M dwarf and the emergent spectrum will be significantly different from an isolated M dwarf or a black body flux distribution. For the first time, synthetic spectra suitable for direct comparison to high-resolution observations of irradiated M dwarfs in non-mass transferring post-common envelope binaries are presented. The effects of departures from local thermodynamic equilibrium on the Balmer line profiles are also discussed.Comment: Accepted for publication in ApJ; 12 pages, 10 figure

    The brightest pure-H ultracool white dwarf

    Get PDF
    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (H_J=21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880+-90 K. This object is the brightest pure-H ultracool white dwarf (Teff<4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs.Comment: 5 pages, 7 figures, accepted for publication in A&A Letter

    Use of electron beam lithography to selectively decompose metalorganics into patterned thin‐film superconductors

    Full text link
    Fine line superconductors, approximately 5 μm in width and 260 nm thick, were formed from Y‐Ba‐Cu on 〈100〉SrTiO3 by the combined methods of metalorganic deposition and selective area electron beam exposure. The lines were written in metal neodecanoates using an electron beam having a spot size of 0.25 μm and an energy of 25 kV. The dosage of the exposure was 1200 μC/cm2. Unexposed areas were removed with a 30 s xylene wash. A 500 °C pyrolysis in air for 300 s followed by rapid thermal annealing in oxygen produced lines having superconducting onsets above 90 K and zero resistance at 69 K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70966/2/APPLAB-53-6-526-1.pd

    J-band variability of M dwarfs in the WFCAM Transit Survey

    Get PDF
    We present an analysis of the photometric variability of M dwarfs in the Wide Field Camera (WFCAM) Transit Survey. Although periodic light-curve variability in low mass stars is generally dominated by photospheric star spot activity, M dwarf variability in the J band has not been as thoroughly investigated as at visible wavelengths. Spectral type estimates for a sample of over 200 000 objects are made using spectral type-colour relations, and over 9600 dwarfs (J 0.2 mag flaring event from an M4V star in our sample.Peer reviewe

    Enriched root bacterial microbiome in invaded vs native ranges of the model grass allotetraploid Brachypodium hybridum

    Get PDF
    Invasive species can shift the composition of key soil microbial groups, thus creating novel soil microbial communities. To better understand the biological drivers of invasion, we studied plant-microbial interactions in species of the Brachypodium distachyon complex, a model system for functional genomic studies of temperate grasses and bioenergy crops. While Brachypodium hybridum invasion in California is in an incipient stage, threatening natural and agricultural systems, its diploid progenitor species B. distachyon is not invasive in California. We investigated the root, soil, and rhizosphere bacterial composition of Brachypodium hybridum in both its native and invaded range, and of B. distachyon in the native range. We used high-throughput, amplicon sequencing to evaluate if the bacteria associated with these plants differ, and whether biotic controls may be driving B. hybridum invasion. Bacterial community composition of B. hybridum differed based on provenance (native or invaded range) for root, rhizosphere, and bulk soils, as did the abundance of dominant bacterial taxa. Bacteroidetes, Cyanobacteria and Bacillus spp. (species) were significantly more abundant in B. hybridum roots from the invaded range, whereas Proteobacteria, Firmicutes, Erwinia and Pseudomonas were more abundant in the native range roots. Brachypodium hybridum forms novel biotic interactions with a diverse suite of rhizosphere microbes from the invaded range, which may not exert a similar influence within its native range, ostensibly contributing to B. hybridum''s invasiveness. These associated plant microbiomes could inform future management approaches for B. hybridum in its invaded range and could be key to understanding, predicting, and preventing future plant invasions
    corecore