150 research outputs found
Influence of Occupant Behaviour Lifestyle on an Italian Social Housing
The Post-Carbon City concept has a decisive effect on the building design, in terms of envelope and system technologies, and, especially, of interaction between the occupant and the building itself. Occupant behaviour lifestyle is one of the most significant driving factors of uncertainty in the prediction of building energy use and thus represents a fundamental aspect that is necessary to modelling. This study examines the difference between the energy consumptions assessed during design phase and the monitored ones for a social housing. Dynamic simulation was employed to demonstrate the impact of occupant behavior lifestyles and household composition on energy uses
Silhouette + Attraction: A Simple and Effective Method for Text Clustering
[EN] This article presents silhouette attraction (Sil Att), a simple and effective method for text clustering, which is based on two main concepts: the silhouette coefficient and the idea of attraction. The combination of both principles allows us to obtain a general technique that can be used either as a boosting method, which improves results of other clustering algorithms, or as an independent clustering algorithm. The experimental work shows that Sil Att is able to obtain high-quality results on text corpora with very different characteristics. Furthermore, its stable performance on all the considered corpora is indicative that it is a very robust method. This is a very interesting positive aspect of Sil Att with respect to the other algorithms used in the experiments, whose performances heavily depend on specific characteristics of the corpora being considered.This research work has been partially funded by UNSL, CONICET (Argentina), DIANA-APPLICATIONS-Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) research project, and the WIQ-EI IRSES project (grant no. 269180) within the FP 7 Marie Curie People Framework on Web Information Quality Evaluation Initiative. The work of the third author was done also in the framework of the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems.Errecalde, M.; Cagnina, L.; Rosso, P. (2015). Silhouette + Attraction: A Simple and Effective Method for Text Clustering. Natural Language Engineering. 1-40. https://doi.org/10.1017/S1351324915000273S140Zhao, Y., & Karypis, G. (2004). Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering. Machine Learning, 55(3), 311-331. doi:10.1023/b:mach.0000027785.44527.d6Tu, L., & Chen, Y. (2009). Stream data clustering based on grid density and attraction. ACM Transactions on Knowledge Discovery from Data, 3(3), 1-27. doi:10.1145/1552303.1552305Yang, T., Jin, R., Chi, Y., & Zhu, S. (2009). Combining link and content for community detection. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09. doi:10.1145/1557019.1557120Zhao, Y., Karypis, G., & Fayyad, U. (2005). Hierarchical Clustering Algorithms for Document Datasets. Data Mining and Knowledge Discovery, 10(2), 141-168. doi:10.1007/s10618-005-0361-3Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding Groups in Data. Wiley Series in Probability and Statistics. doi:10.1002/9780470316801Karypis, G., Eui-Hong Han, & Kumar, V. (1999). Chameleon: hierarchical clustering using dynamic modeling. Computer, 32(8), 68-75. doi:10.1109/2.781637Cagnina, L., Errecalde, M., Ingaramo, D., & Rosso, P. (2014). An efficient Particle Swarm Optimization approach to cluster short texts. Information Sciences, 265, 36-49. doi:10.1016/j.ins.2013.12.010He, H., Chen, B., Xu, W., & Guo, J. (2007). Short Text Feature Extraction and Clustering for Web Topic Mining. Third International Conference on Semantics, Knowledge and Grid (SKG 2007). doi:10.1109/skg.2007.76Spearman, C. (1904). The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1), 72. doi:10.2307/1412159Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. doi:10.1016/0377-0427(87)90125-7Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval. doi:10.1017/cbo9780511809071Qi, G.-J., Aggarwal, C. C., & Huang, T. (2012). Community Detection with Edge Content in Social Media Networks. 2012 IEEE 28th International Conference on Data Engineering. doi:10.1109/icde.2012.77Daxin Jiang, Jian Pei, & Aidong Zhang. (s. f.). DHC: a density-based hierarchical clustering method for time series gene expression data. Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings. doi:10.1109/bibe.2003.1188978Charikar, M., Chekuri, C., Feder, T., & Motwani, R. (2004). Incremental Clustering and Dynamic Information Retrieval. SIAM Journal on Computing, 33(6), 1417-1440. doi:10.1137/s0097539702418498Selim, S. Z., & Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24(10), 1003-1008. doi:10.1016/0031-3203(91)90097-oAranganayagi, S., & Thangavel, K. (2007). Clustering Categorical Data Using Silhouette Coefficient as a Relocating Measure. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). doi:10.1109/iccima.2007.328Makagonov, P., Alexandrov, M., & Gelbukh, A. (2004). Clustering Abstracts Instead of Full Texts. Lecture Notes in Computer Science, 129-135. doi:10.1007/978-3-540-30120-2_17Jing L. 2005. Survey of text clustering. Technical report. Department of Mathematics. The University of Hong Kong, Hong Kong, China.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.xHearst, M. A. (2006). Clustering versus faceted categories for information exploration. Communications of the ACM, 49(4), 59. doi:10.1145/1121949.1121983Alexandrov, M., Gelbukh, A., & Rosso, P. (2005). An Approach to Clustering Abstracts. Lecture Notes in Computer Science, 275-285. doi:10.1007/11428817_25Dos Santos, J. B., Heuser, C. A., Moreira, V. P., & Wives, L. K. (2011). Automatic threshold estimation for data matching applications. Information Sciences, 181(13), 2685-2699. doi:10.1016/j.ins.2010.05.029Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2009). Robust partitional clustering by outlier and density insensitive seeding. Pattern Recognition Letters, 30(11), 994-1002. doi:10.1016/j.patrec.2009.04.013Dunn†, J. C. (1974). Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4(1), 95-104. doi:10.1080/01969727408546059Carullo, M., Binaghi, E., & Gallo, I. (2009). An online document clustering technique for short web contents. Pattern Recognition Letters, 30(10), 870-876. doi:10.1016/j.patrec.2009.04.001Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. doi:10.1080/01621459.1952.10483441Bezdek, J. C., & Pal, N. R. (s. f.). Cluster validation with generalized Dunn’s indices. Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems. doi:10.1109/annes.1995.499469Brun, M., Sima, C., Hua, J., Lowey, J., Carroll, B., Suh, E., & Dougherty, E. R. (2007). Model-based evaluation of clustering validation measures. Pattern Recognition, 40(3), 807-824. doi:10.1016/j.patcog.2006.06.026Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224-227. doi:10.1109/tpami.1979.4766909Pinto, D., & Rosso, P. (s. f.). On the Relative Hardness of Clustering Corpora. Lecture Notes in Computer Science, 155-161. doi:10.1007/978-3-540-74628-7_22Pons-Porrata, A., Berlanga-Llavori, R., & Ruiz-Shulcloper, J. (2007). Topic discovery based on text mining techniques. Information Processing & Management, 43(3), 752-768. doi:10.1016/j.ipm.2006.06.001Pinto, D., BenedĂ, J.-M., & Rosso, P. (2007). Clustering Narrow-Domain Short Texts by Using the Kullback-Leibler Distance. Lecture Notes in Computer Science, 611-622. doi:10.1007/978-3-540-70939-8_5
- …