256 research outputs found

    Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia

    Get PDF
    Shifts in rainfall and rising temperatures due to climate change pose a formidable challenge to the sustainability of broadacre crop yields in Western and South-Eastern Australia. Output from18 Global Climate Models (GCMs) for the Special Report on Emission Scenarios (SRES) A2 scenario was statistically downscaled to four contrasting locations. For the first time in these regions, bias corrected statistically downscaled climate data were employed to drive the Agricultural Production Systems Simulator (APSIM) crop model that integrates the effects of soil, crop phenotype, and management options for a quantitative comparison of crop yields and phenology under an historical and a plausible projected climate. The dynamic APSIM simulation model explore the implications of climate change across multiple locations and multiple time periods (1961–2010, 2030, 2060 and 2090) for multiple key crops (wheat, barley, lupin, canola, field pea) grown in three different types of soil. On average, the ensemble of downscaled GCM projections show a decrease in rainfall in the future at the four locations considered, with increased variability at two locations. At all locations and for five crops, future changes in both crop biomass and grain yield are strongly associated with changes in rainfall (P = 0.05 to P = 0.001). The overall rainfall amount is critical in determining yields but, equally, higher future temperatures can contribute to reducing crop productivity primarily due to advanced crop phenology. For example, for wheat cropping at Hamilton (a higher rainfall site), there is a significant advancement in median flowering date for 2030, 2060, and 2090 of 10, 18, and 29 days respectively with a significant 0.50% grain yield changes for each percentage change in rainfall compared to significant 0.90% grain yield changes in Cunderdin (a lower rainfall site). At all sites except Hamilton, the change in crop grain yield is significantly correlated (P = 0.001) with the percentage change in the future rainfall and the impact increased progressively from higher rainfall to lower rainfall sites. However, the magnitude of the change in crop phenology and yield were not significantly different between soil types. These results help to define regions of concern and their relative importance in the coming years. In this future climate the negative consequences for crop yields and advancement of phenology relative to baseline are not uniform across crops and locations. Of the crops studied – wheat, barley, lupin, canola and field pea – field pea is the most sensitive to the projected future climate changes, and the ensemble median changes in field pea yield range from a decrease of 12% to a decrease of 45%, depending on location. These results highlight the importance of research and policy to support strategies for adapting to climate change, such as advances in agronomy, soil moisture conservation, seasonal climate forecasting and breeding new crop varieties

    Impact of facial conformation on canine health: Brachycephalic Obstructive Airway Syndrome

    Get PDF
    The domestic dog may be the most morphologically diverse terrestrial mammalian species known to man; pedigree dogs are artificially selected for extreme aesthetics dictated by formal Breed Standards, and breed-related disorders linked to conformation are ubiquitous and diverse. Brachycephaly–foreshortening of the facial skeleton–is a discrete mutation that has been selected for in many popular dog breeds e.g. the Bulldog, Pug, and French Bulldog. A chronic, debilitating respiratory syndrome, whereby soft tissue blocks the airways, predominantly affects dogs with this conformation, and thus is labelled Brachycephalic Obstructive Airway Syndrome (BOAS). Despite the name of the syndrome, scientific evidence quantitatively linking brachycephaly with BOAS is lacking, but it could aid efforts to select for healthier conformations. Here we show, in (1) an exploratory study of 700 dogs of diverse breeds and conformations, and (2) a confirmatory study of 154 brachycephalic dogs, that BOAS risk increases sharply in a non-linear manner as relative muzzle length shortens. BOAS only occurred in dogs whose muzzles comprised less than half their cranial lengths. Thicker neck girths also increased BOAS risk in both populations: a risk factor for human sleep apnoea and not previously realised in dogs; and obesity was found to further increase BOAS risk. This study provides evidence that breeding for brachycephaly leads to an increased risk of BOAS in dogs, with risk increasing as the morphology becomes more exaggerated. As such, dog breeders and buyers should be aware of this risk when selecting dogs, and breeding organisations should actively discourage exaggeration of this high-risk conformation in breed standards and the show ring

    Low-dose aspirin does not improve ovarian stimulation, endometrial response, or pregnancy rates for in vitro fertilization

    Get PDF
    BACKGROUND: The purpose of this study is to determine if low-dose aspirin improved ovarian stimulation, endometrial response, or IVF pregnancy rates in our program. METHODS: Retrospective analysis of 316 consecutive IVF cycles from 1995 through 2001. Aspirin 80 mg daily was initiated at the start of luteal leuprolide in 72 cycles. The 244 controls received no aspirin during treatment. RESULTS: The live birth rate in aspirin users was 29%, slightly lower compared to 41% in the no aspirin control group (p = 0.07). Implantation rates were 21% with aspirin and 30% in the control population (p = 0.01). There was no difference in the maximal endometrial thickness between aspirin and non-aspirin groups. The two groups were similar regarding age, gonadotropin ampules, embryos, number of embryos transferred, prior parity, diagnosis, use of intracytoplasmic sperm injection, and stimulation protocol. CONCLUSION: Low-dose aspirin was not beneficial to IVF patients in our program. Aspirin does not enhance endometrial thickness, augment the ovarian response, or improve pregnancy rates

    Standardizing definitions and reporting guidelines for the infertility core outcome set : an international consensus development study

    Get PDF
    Acknowledgments We would like to thank the consensus development meeting participants and colleagues at the Cochrane Gynaecology and Fertility Group, University of Auckland, New Zealand. Funding This research was funded by the Catalyst Fund, Royal Society of New Zealand, Auckland Medical Research Fund and Maurice and Phyllis Paykel Trust. The funder had no role in the design and conduct of the study, the collection, management, analysis or interpretation of data or manuscript preparation. Siladitya Bhattacharya was supported by the University of Auckland Foundation Seelye Travelling Fellowship. B.W.M. is supported by a National Health and Medical Research Council Practitioner Fellowship (GNT1082548) This article has not been externally peer reviewed. This article has been published simultaneously in Fertility and SterilityPeer reviewedPublisher PD

    Intracellular SERS nanoprobes for distinction of different neuronal cell types.

    Get PDF
    Distinction between closely related and morphologically similar cells is difficult by conventional methods especially without labeling. Using nuclear-targeted gold nanoparticles (AuNPs) as intracellular probes we demonstrate the ability to distinguish between progenitor and differentiated cell types in a human neuroblastoma cell line using surface-enhanced Raman spectroscopy (SERS). SERS spectra from the whole cell area as well as only the nucleus were analyzed using principal component analysis that allowed unambiguous distinction of the different cell types. SERS spectra from the nuclear region showed the developments during cellular differentiation by identifying an increase in DNA/RNA ratio and proteins transcribed. Our approach using nuclear-targeted AuNPs and SERS imaging provides label-free and noninvasive characterization that can play a vital role in identifying cell types in biomedical stem cell research

    Why are mineralocorticoid receptor antagonists cardioprotective?

    Get PDF
    Two clinical trials, the Randomized ALdosterone Evaluation Study (RALES) and the EPlerenone HEart failure and SUrvival Study (EPHESUS), have recently shown that mineralocorticoid receptor (MR) antagonists reduce mortality in patients with heart failure on top of ACE inhibition. This effect could not be attributed solely to blockade of the renal MR-mediated effects on blood pressure, and it has therefore been proposed that aldosterone, the endogenous MR agonist, also acts extrarenally, in particular in the heart. Indeed, MR are present in cardiac tissue, and possibly aldosterone synthesis occurs in the heart. This review critically addresses the following questions: (1) is aldosterone synthesized at cardiac tissue sites, (2) what agonist stimulates cardiac MR normally, and (3) what effects are mediated by aldosterone/MR in the heart that could explain the beneficial effects of MR blockade in heart failure? Conclusions are that most, if not all, of cardiac aldosterone originates in the circulation (i.e., is of adrenal origin), and that glucocorticoids, in addition to aldosterone, may serve as the endogenous agonist of cardiac MR. MR-mediated effects in the heart include effects on endothelial function, cardiac fibrosis and hypertrophy, oxidative stress, cardiac inotropy, coronary flow, and arrhythmias. Some of these effects occur via or in synergy with angiotensin II, and involve a non-MR-mediated mechanism. This raises the possibility that aldosterone synthase inhibitors might exert beneficial effects on top of MR blockade

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic
    corecore