18 research outputs found

    Numerical Solution of a Complete Formulation of Flow in a Perfusion Bone-Tissue Bioreactor Using Lattice Boltzmann Equation Method

    Full text link
    We report the key findings from numerical solutions of a model of transport within an established perfusion bioreactor design. The model includes a complete formulation of transport with fully coupled convection-diffusion and scaffold cell attachment. It also includes the experimentally determined internal (Poly-L-Lactic Acid (PLLA)) scaffold boundary, together with the external vessel and flow-port boundaries. Our findings, obtained using parallel lattice Boltzmann equation method, relate to (i) whole-device, steady-state flow and species distribution and (ii) the properties of the scaffold. In particular the results identify which elements of the problem may be addressed by coarse grained methods such as the Darcy approximation and those which require a more complete description. The work demonstrates that appropriate numerical modelling will make a key contribution to the design and development of large scale bioreactors.Comment: 9 pages, 3 figure

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements
    corecore