2,152 research outputs found
Metabolism of amino acid amides in Pseudomonas putida ATCC 12633
The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed constitutive L-amidase activities towards L-PG-NH2 and L-Val-NH2, both following the same pattern of expression, suggesting the involvement of similarly regulated enzymes, or a common enzyme. Quite surprisingly, growth in mineral media with L-PG-NH2 resulted in variable, long lag phases of growth and strongly reduced L-amidase activities. Conversion of D-PG-NH2 into D-PG and L-PG also occurred and could be attributed to the presence of an inducible D-amidase and the racemization of the amino acid amide in combination with L-amidase activity, respectively. The further degradation of L-PG and D-PG involved constitutive L-PG aminotransferase and inducible D-PG dehydrogenase activities, respectively, both with a high degree of enantioselectivity. Amino acid racemase activity for D- and L-PG was not detected.
The seismic properties of low-mass He-core white dwarf stars
We present here a detailed pulsational study applied to low-mass He-core
white dwarfs, based on full evolutionary models representative of these
objects. The background stellar models on which our pulsational analysis was
carried out were derived by taking into account the complete evolutionary
history of the progenitor stars, with special emphasis on the diffusion
processes acting during the white dwarf cooling phase. We computed nonradial
-modes to assess the dependence of the pulsational properties of these
objects with stellar parameters such as the stellar mass and the effective
temperature, and also with element diffusion processes. We also performed a g-
and p-mode pulsational stability analysis on our models and found well-defined
blue edges of the instability domain, where these stars should start to exhibit
pulsations. We found substantial differences in the seismic properties of white
dwarfs with and the extremely low-mass (ELM) white
dwarfs (). Specifically, -mode pulsation modes
in ELM white dwarfs mainly probe the core regions and are not dramatically
affected by mode-trapping effects by the He/H interface, whereas the opposite
is true for more massive He-core white dwarfs. We found that element diffusion
processes substantially affects the shape of the He/H chemical transition
region, leading to non-negligible changes in the period spectrum of low-mass
white dwarfs. Our stability analysis successfully predicts the pulsations of
the only known variable low-mass white dwarf (SDSS J184037.78+642312.3), and
also predicts both - and -mode pulsational instabilities in a significant
number of known low-mass and ELM white dwarfs.Comment: 14 pages, 15 figures, 2 tables. To be published in Astronomy &
Astrophysic
Performance, emissions, and physical characteristics of a rotating combustion aircraft engine
The RC2-75, a liquid cooled two chamber rotary combustion engine (Wankel type), designed for aircraft use, was tested and representative baseline (212 KW, 285 BHP) performance and emissions characteristics established. The testing included running fuel/air mixture control curves and varied ignition timing to permit selection of desirable and practical settings for running wide open throttle curves, propeller load curves, variable manifold pressure curves covering cruise conditions, and EPA cycle operating points. Performance and emissions data were recorded for all of the points run. In addition to the test data, information required to characterize the engine and evaluate its performance in aircraft use is provided over a range from one half to twice its present power. The exhaust emissions results are compared to the 1980 EPA requirements. Standard day take-off brake specific fuel consumption is 356 g/KW-HR (.585 lb/BHP-HR) for the configuration tested
- …