334 research outputs found

    Full-field structured-illumination super-resolution X-ray transmission microscopy

    No full text
    Modern transmission X-ray microscopy techniques provide very high resolution at low and medium X-ray energies, but suffer from a limited field-of-view. If sub-micrometre resolution is desired, their field-of-view is typically limited to less than one millimetre. Although the field-of-view increases through combining multiple images from adjacent regions of the specimen, so does the required data acquisition time. Here, we present a method for fast full-field super-resolution transmission microscopy by structured illumination of the specimen. This technique is well-suited even for hard X-ray energies above 30 keV, where efficient optics are hard to obtain. Accordingly, investigation of optically thick specimen becomes possible with our method combining a wide field-of-view spanning multiple millimetres, or even centimetres, with sub-micron resolution and hard X-ray energies

    Quick X-ray microtomography using a laser-driven betatron source

    Full text link
    Laser-driven X-ray sources are an emerging alternative to conventional X-ray tubes and synchrotron sources. We present results on microtomographic X-ray imaging of a cancellous human bone sample using synchrotron-like betatron radiation. The source is driven by a 100-TW-class titanium-sapphire laser system and delivers over 10810^8 X-ray photons per second. Compared to earlier studies, the acquisition time for an entire tomographic dataset has been reduced by more than an order of magnitude. Additionally, the reconstruction quality benefits from the use of statistical iterative reconstruction techniques. Depending on the desired resolution, tomographies are thereby acquired within minutes, which is an important milestone towards real-life applications of laser-plasma X-ray sources

    Ultrasensitive 3He magnetometer for measurements of high magnetic fields

    Full text link
    We describe a 3He magnetometer capable to measure high magnetic fields (B > 0.1 Tesla) with a relative accuracy of better than 10^-12. Our approach is based on the measurement of the free induction decay of gaseous, nuclear spin polarized 3He following a resonant radio frequency pulse excitation. The measurement sensitivity can be attributed to the long coherent spin precession time T2* being of order minutes which is achieved for spherical sample cells in the regime of motional narrowing where the disturbing influence of field inhomogeneities is strongly suppressed. The 3He gas is spin polarized in-situ using a new, non-standard variant of the metastability exchange optical pumping. We show that miniaturization helps to increase T2* further and that the measurement sensitivity is not significantly affected by temporal field fluctuations of order 10^-4.Comment: 27 pages, 7 figure

    Theory of magnetic domains in uniaxial thin films

    Full text link
    For uniaxial easy axis films, properties of magnetic domains are usually described within the Kittel model, which assumes that domain walls are much thinner than the domains. In this work we present a simple model that includes a proper description of the magnetostatic energy of domains and domain walls and also takes into account the interaction between both surfaces of the film. Our model describes the behavior of domain and wall widths as a function of film thickness, and is especially well suited for the strong stripe phase. We prove the existence of a critical value of magneto-crystalline anisotropy above which stripe domains exist for any film thickness and justify our model by comparison with exact results. The model is in good agreement with experimental data for hcp cobalt.Comment: 15 pages, 7 figure

    Phase transition in ultrathin magnetic films with long-range interactions: Monte Carlo simulation of the anisotropic Heisenberg model

    Full text link
    Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long-range dipolar interactions. It is believed that the phase diagram presents three phases: An ordered ferromagnetic phase I, a phase characterized by a change from out-of-plane to in-plane in the magnetization II, and a high-temperature paramagnetic phase III. It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phases II and III is of the BKT type.Comment: 7 page

    Magnetic Behavior of Co/Pt and TbCo Nanocaps Assembly for Bit Pattern Media

    Get PDF
    Large area patterning of self-assembled alumina nanobumps, with hexagonally close-packed order, has been used to create ordered array of bit pattern magnetic media. We have studied the magnetic properties of perpendicular magnetic TbCo alloy and Co/Pt multilayers deposited on self assembled alumina nanobumps. Measurement of reversal field as a function of field intensity, as well as magnetic force microscopy images confirm the weakness of exchange coupling between bits in the case of Co/Pt multilayer while stronger coupling is observed in the case of TbCo alloys. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3535

    Magnetic Behavior of Co/Pt and TbCo Nanocaps Assembly for Bit Pattern Media

    Get PDF
    Large area patterning of self-assembled alumina nanobumps, with hexagonally close-packed order, has been used to create ordered array of bit pattern magnetic media. We have studied the magnetic properties of perpendicular magnetic TbCo alloy and Co/Pt multilayers deposited on self assembled alumina nanobumps. Measurement of reversal field as a function of field intensity, as well as magnetic force microscopy images confirm the weakness of exchange coupling between bits in the case of Co/Pt multilayer while stronger coupling is observed in the case of TbCo alloys. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3535

    Element resolved ultrafast demagnetization rates in ferrimagnetic CoDy

    Get PDF
    Femtosecond laser induced ultrafast magnetization dynamics have been studied in multisublattice CoxDy1-x alloys. By performing element and time-resolved X-ray spectroscopy, we distinguish the ultrafast quenching of Co3d and Dy4f magnetic order when the initial temperatures are below (T=150K) or above (T=270K) the temperature of magnetic compensation (Tcomp). In accordance with former element-resolved investigations and theoretical calculations, we observe different dynamics for Co3d and Dy4f spins. In addition we observe that, for a given laser fluence, the demagnetization amplitudes and demagnetization times are not affected by the existence of a temperature of magnetic compensation. However, our experiment reveals a twofold increase of the ultrafast demagnetization rates for the Dy sublattice at low temperature. In parallel, we measure a constant demagnetization rate of the Co3d sublattice above and below Tcomp. This intriguing difference between the Dy4f and Co3d sublattices calls for further theoretical and experimental investigations.Comment: 6 Figure, 2 Table
    corecore