681 research outputs found

    Space Radio Astronomy in the next 1000001 (binary) years

    Full text link
    Radio astronomy and active exploration of space are peers: both began by efforts of enthusiasts in the 1930s and got a major technological boost in the 1940s-50s. Thus, for the sake of a brief review at this very special conference, it is fair to estimate the present age of these human endeavours as 1000001 (binary) years. These years saw a lot of challenging and fruitful concerted efforts by radio astronomers and space explorers. Among the high points one can mention several highly successful space-borne CMB observatories, three orbital VLBI missions, the first examples of radio observations at spectral windows hitherto closed for Earth-based observers and many yet to be implemented initiatives which are at various stages of their paths toward launch-pads of all major world space agencies. In this review I will give a bird-eye picture of the past achievements of space-oriented radio astronomy and zoom into several projects and ideas that will further push the presence of radio astronomy into the space agenda of mankind over the next 1000001 (binary) years. In tune with the main themes of this conference, an emphasis will be made on space frontiers of VLBI and the SKA.Comment: 9 pages, 2 figures. Proceedings of the conference "Resolving the Sky - Radio Interferometry: Past, Present and Future", Manchester, UK, 17-20 April 2012, Proceedings of Science, 201

    Interferometry in astrophysics as a roadmap for interferometry in multiparticle dynamics

    Full text link
    Interferometry is one of the most powerful experimental tools of modern astrophysics. Some of its methods are considered in view of potential applicability to studies of correlations in multiparticle dynamics.Comment: 6 pages, 2 figures in ps, talk given at XXXI International Symposium on Multiparticle Dynamics, Sept 1-7, 2001, Datong China. URL http://ismd31.ccnu.edu.cn

    Separable balls around the maximally mixed multipartite quantum states

    Full text link
    We show that for an m-partite quantum system, there is a ball of radius 2^{-(m/2-1)} in Frobenius norm, centered at the identity matrix, of separable (unentangled) positive semidefinite matrices. This can be used to derive an epsilon below which mixtures of epsilon of any density matrix with 1 - epsilon of the maximally mixed state will be separable. The epsilon thus obtained is exponentially better (in the number of systems) than existing results. This gives a number of qubits below which NMR with standard pseudopure-state preparation techniques can access only unentangled states; with parameters realistic for current experiments, this is 23 qubits (compared to 13 qubits via earlier results). A ball of radius 1 is obtained for multipartite states separable over the reals.Comment: 8 pages, LaTe

    Separability in terms of a single entanglement witness

    Full text link
    The separability problem is formulated in terms of a characterization of a single entanglement witness. More specifically, we show that any (in general multipartite) state \varrho is separable if and only if a specially constructed entanglement witness W_{\varrho} is weakly optimal, i.e., its expectation value vanishes on at least one product vector. Interestingly, the witness can always be chosen to be decomposable. Our result changes the conceptual aspect of the separability problem and rises some questions about properties of positive maps.Comment: 4.4 pages, 1 figure, published versio

    Redshift, Time, Spectrum - the most distant radio quasars with VLBI

    Full text link
    The highest-redshift quasars are still rare and valuable objects for observational astrophysics and cosmology. They provide important constraints on the growth of the earliest supermassive black holes in the Universe, and information on the physical conditions in their environment. Among the nearly 60 quasars currently known at redshifts z>5.7, only a handful are "strong" emitters in radio continuum. These can be targets of sensitive high-resolution Very Long Baseline Interferometry (VLBI) observations to reveal their innermost structure, down to ~10 pc linear scales. We review the results of our earlier European VLBI Network (EVN) experiments on three of the most distant radio quasars known to date, and give a preliminary report on the EVN detection of a fourth one. The results obtained so far suggest that we see really young active galactic nuclei - not just in a cosmological sense but also in terms of their active life in radio.Comment: 7 pages, 1 figure. To appear in the proceedings of the RTS 2012 (Resolving The Sky - Radio Interferometry: Past, Present and Future) conference, April 17-20, 2012, Manchester (UK). Proceedings of Science, PoS(RTS2012)04

    Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS 1402+044

    Full text link
    We investigate the frequency-dependent radio properties of the jet of the luminous high-redshift (z = 3.2) radio quasar PKS 1402+044 (J1405+0415) by means of radio interferometric observations. The observational data were obtained with the VLBI Space Observatory Programme (VSOP) at 1.6 and 5 GHz, supplemented by other multi-frequency observations with the Very Long Baseline Array (VLBA; 2.3, 8.4, and 15 GHz) and the Very Large Array (VLA; 1.4, 5, 15, and 43 GHz). The observations span a period of 7 years. We find that the luminous high-redshift quasar PKS 1402+044 has a pronounced "core-jet" morphology from the parsec to the kilo-parsec scales. The jet shows a steeper spectral index and lower brightness temperature with increasing distance from the jet core. The variation of brightness temperature agrees well with the shock-in-jet model. Assuming that the jet is collimated by the ambient magnetic field, we estimate the mass of the central object as ~10^9 M_sun. The upper limit of the jet proper motion of PKS 1402+044 is 0.03 mas/yr (~3c) in the east-west direction.Comment: 9 pages, 6 figures

    Detecting separable states via semidefinite programs

    Full text link
    We introduce a new technique to detect separable states using semidefinite programs. This approach provides a sufficient condition for separability of a state that is based on the existence of a certain local linear map applied to a known separable state. When a state is shown to be separable, a proof of this fact is provided in the form of an explicit convex decomposition of the state in terms of product states. All states in the interior of the set of separable states can be detected in this way, except maybe for a set of measure zero. Even though this technique is more suited for a numerical approach, a new analytical criterion for separability can also be derived.Comment: 8 pages, accepted for publication in Physical Review
    corecore