13 research outputs found

    Efficient evolutionary optimization using individual-based evolution control and neural networks: A comparative study.

    Get PDF
    Abstract. To reduce the number of expensive fitness function evaluations in evolutionary optimization, several individual-based and generation-based evolution control methods have been suggested. This paper compares four individual-based evolution control frameworks on three widely used test functions. Feedforward neural networks are employed for fitness estimation. Two conclusions can be drawn from our simulation results. First, the pre-selection strategy seems to be the most stable individual-based evolution control method. Second, structure optimization of neural networks mostly improves the performance of all compared algorithms.

    Evolutionary Optimization with Dynamic Fidelity Computational Models

    No full text
    In this paper, we propose an evolutionary framework for model fidelity control that decides, at runtime, the appropriate fidelity level of the computational model, which is deemed to be computationally less expensive, to be used in place of the exact analysis code as the search progresses. Empirical study on an aerodynamic airfoil design problem based on a Memetic Algorithm with Dynamic Fidelity Model (MA-DFM) demonstrates that improved quality solution and efficiency are obtained over existing evolutionary schemes. © 2008 Springer-Verlag Berlin Heidelberg

    Technological aspects in blanket design: Effects of micro-alloying and thermo-mechanical treatments of EUROFER97 type steels after neutron irradiation

    Get PDF
    Presently available data on neutron irradiation damage raise doubts on the feasibility of using EUROFER97 steel for a water-cooled starter blanket in a DEMO reactor, since the ductile-to-brittle transition temperature (DBTT) increases significantly for irradiation temperatures below 350°C. The additional DBTT shift caused by H and He transmutation can only be estimated based on very few results with isotopically tailored EUROFER97 steel. Conservative calculations show that the DBTT of EUROFER97 steel could exceed the operating temperature in water-cooled starter blankets within a relatively short time period. This paper presents results from a EUROfusion funded irradiation campaign that was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. The paper compares ten newly developed reduced activation ferritic-martensitic (RAFM) steels irradiated to a nominal dose of 2.5 dpa at 300°C. The post-irradiation experiments using Small Specimen Test Technology included hardness, tensile, and fracture mechanics tests combined with fractography and microstructure analysis are presented. Results show that micro-alloying EUROFER97-type steels influenced the mechanical properties but a dominating impact on irradiation damage resistance could not be identified. In contrast, specific thermo-mechanical treatments lead to better DBTT behavior. Discussion about irradiation response to heat treatment conditions is also given. Despite requiring data also at high dpa values, the results indicate that with these modified materials an increased lifetime and potentially also an increased operating temperature window can be achieved compared to EUROFER97

    Towards the evolution of vertical-axis wind turbines using supershapes

    No full text
    © 2014, Springer-Verlag Berlin Heidelberg. We have recently presented an initial study of evolutionary algorithms used to design vertical-axis wind turbines (VAWTs) wherein candidate prototypes are evaluated under fan generated wind conditions after being physically instantiated by a 3D printer. That is, unlike other approaches such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made. However, the representation used significantly restricted the range of morphologies explored. In this paper, we present initial explorations into the use of a simple generative encoding, known as Gielis superformula, that produces a highly flexible 3D shape representation to design VAWT. First, the target-based evolution of 3D artefacts is investigated and subsequently initial design experiments are performed wherein each VAWT candidate is physically instantiated and evaluated under fan generated wind conditions. It is shown possible to produce very closely matching designs of a number of 3D objects through the evolution of supershapes produced by Gielis superformula. Moreover, it is shown possible to use artificial physical evolution to identify novel and increasingly efficient supershape VAWT designs
    corecore