17 research outputs found

    Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    Full text link
    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atoms gravimeter and FG5#220 of Leibniz Universit\"at of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participated to the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of 4.3 +/- 6.4 {\mu}Gal

    Proposal for new experimental schemes to realize the Avogadro constant

    Get PDF
    We propose two experimental schemes to determine and so to realize the Avogadro constant N_AN\_{A} at the level of 107^{-7} or better with a watt balance experiment and a cold atom experiment measuring h/m(X)h/m(X) (where hh is the Planck constant and m(X)m(X) the mass of the atom XX). We give some prospects about achievable uncertainties and we discuss the opportunity to test the existence of possible unknown correction factors for the Josephson effect and quantum Hall effect

    CVD elaboration and in situ characterization of barium silicate thin films.

    No full text
    International audienceThis study is concerned with the elaboration of barium silicate thin films by metal organic chemical vapor deposition (MOCVD) and in situ characterization by X-ray photoemission spectroscopy (XPS) with an apparatus connected to the deposition reactor. The difficulty to find an efficient metal organic precursor for barium is described. After characterizations of the selected reactant, Ba(TMHD)2tetraglyme, the development of an original specific vapor delivering source which allows reactant sublimation in the CVD reactor was performed. In the most optimized cases, including use of oxygen introduction during the deposition, barium silicate films were obtained. Moreover, non-negligible amounts of carbon and presence of barium oxide on the top of the layers were observed

    Elaboration and characterization of barium silicate thin films.

    No full text
    International audienceRoom temperature depositions of barium on a thermal silicon oxide layer were performed in ultra high vacuum (UHV). In-situ X-ray photoelectron spectroscopy (XPS) analyses were carried out as well after exposure to air as after subsequent annealings. These analyses were ex-situ completed by secondary ion mass spectrometry (SIMS) profiles and transmission electron microscopy (TEM) cross-sectional images. The results showed that after air exposure, the barium went carbonated. Annealing at sufficient temperature permitted to decompose the carbonate to benefit of a barium silicate. The silicate layer was formed by interdiffusion of barium with the initial SiO2 layer
    corecore