331 research outputs found
Thermal (in)stability of type I collagen fibrils
We measured Young's modulus at temperatures ranging from 20 to 100 ^{\circ}25-45^{\circ}45-80^{\circ}70-80^{\circ}120^\circ$C. Our main result
is a five-stage mechanism by which the instability of a single collagen at
physiological temperatures is compensated by the interaction between collagen
molecules within the fibril.Comment: 4 pages, 4 figure
Supernovae and their host galaxies -- VII. The diversity of Type Ia supernova progenitors
We present an analysis of the light curve (LC) decline rates of 407 normal and peculiar supernovae (SNe) Ia and global parameters
of their host galaxies. As previously known, there is a significant correlation
between the of normal SNe Ia and global ages (morphologies,
colours, masses) of their hosts. On average, those normal SNe Ia that are in
galaxies from the Red Sequence (early-type, massive, old hosts) have faster
declining LCs in comparison with those from the Blue Cloud (late-type, less
massive, younger hosts) of the colour-mass diagram. The observed correlations
between the of normal SNe Ia and hosts' parameters appear to be
due to the superposition of at least two distinct populations of faster and
slower declining normal SNe Ia from older and younger stellar components. We
show, for the first time, that the of 91bg- and 91T-like SNe is
independent of host morphology and colour. The distribution of hosts on the
colour-mass diagram confirms the known tendency for 91bg-like SNe to occur in
globally red/old galaxies while 91T-like events prefer blue/younger hosts. On
average, the youngest global ages of 02cx-like SNe hosts and their positions in
the colour-mass diagram hint that these events likely originate from young
population, but they differ from 91T-like events in the LC decline rate.
Finally, we discuss the possible explosion channels and present our favoured SN
Ia models that have the potential to explain the observed SN-host relations.Comment: 17 pages, 9 figures, 13 tables, online data, accepted for publication
in MNRA
The composition of peripheral immunocompetent cell subpopulations and cytokine content in the brain structures of mutant Disc1-Q31L mice
The DISC1 (disrupted in sŃhizophrenia 1) gene is associated with brain dysfunctions, which are involved in a variety of mental disorders, such as schizophrenia, depression and bipolar disorder. This is the first study to examine the immune parameters in Disc1-Q31L mice with a point mutation in the second exon of the DISC1 gene compared to mice of the C57BL/6NCrl strain (WT, wild type). A flow cytometry assay has shown that intact Disc1-Q31L mice differ from the WT strain by an increase in the percentage of CD3+ T cells, CD3+CD4+ Đą helper cells and CD3+CD4+CD25+ T regulatory cells and a decrease in CD3+CD8+ T cytotoxic/suppressor cells in the peripheral blood. A multiplex analysis revealed differences in the content of cytokines in the brain structures of Disc1-Q31L mice compared to WT mice. The content of pro-inflammatory cytokines was increased in the frontal cortex (IL-6, IL- 17 and IFNÎł) and striatum (IFNÎł), and decreased in the hippocampus and hypothalamus. At the same time, the levels of IL-1ÎČ were decreased in all structures being examined. In addition, the content of anti-inflammatory cytokines IL-4 was increased in the frontal cortex, while IL-10 amount was decreased in the hippocampus. Immune response to sheep red blood cells analyzed by the number of antibody-forming cells in the spleen was higher in Disc1-Q31L mice at the peak of the reaction than in WT mice. Thus, Disc1-Q31L mice are characterized by changes in the pattern of cytokines in the brain structures, an amplification of the peripheral T-cell link with an increase in the content of the subpopulations of CD3+CD4+ T helpers and CD3+CD4+CD25+ T regulatory cells, as well as elevated immune reactivity to antigen in the spleen
The HPS electromagnetic calorimeter
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called âheavy photon.â Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015â2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier
A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n
Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of
the nuclear physics community for many years. They are an important part of the
nuclear wavefunction, accounting for almost all of the high-momentum strength.
They are closely related to the EMC effect. While their overall probability has
been measured, measuring their momentum distributions is more difficult. In
order to determine the best configuration for studying SRC momentum
distributions, we measured the He reaction, looking at events
with high momentum protons ( GeV/c) and a low momentum neutron
( GeV/c). We examined two angular configurations: either both protons
emitted forward or one proton emitted forward and one backward (with respect to
the momentum transfer, ). The measured relative momentum distribution
of the events with one forward and one backward proton was much closer to the
calculated initial-state relative momentum distribution, indicating that
this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates
minor corrections in response to referee comment
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. epâeÏ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
Ï
+
electroproduction reaction
Îł
â
p
â
n
Ï
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Â
Q
2
,
Â
cos
(
Ξ
â
)
, and
Ï
â
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Electroproduction of mesons at GeV measured with the CLAS spectrometer
Electroproduction of exclusive vector mesons has been studied with the
CLAS detector in the kinematical range GeV,
GeV, and GeV. The
scaling exponent for the total cross section as was
determined to be . The slope of the four-momentum transfer
distribution is GeV. Under the assumption of
s-channel helicity conservation (SCHC), we determine the ratio of longitudinal
to transverse cross sections to be . A 2-gluon exchange model
is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure
Measurement of the neutron F2 structure function via spectator tagging with CLAS
We report on the first measurement of the F2 structure function of the
neutron from semi-inclusive scattering of electrons from deuterium, with
low-momentum protons detected in the backward hemisphere. Restricting the
momentum of the spectator protons to < 100 MeV and their angles to < 100
degrees relative to the momentum transfer allows an interpretation of the
process in terms of scattering from nearly on-shell neutrons. The F2n data
collected cover the nucleon resonance and deep-inelastic regions over a wide
range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear
corrections estimated to be less than a few percent. These measurements provide
the first determination of the neutron to proton structure function ratio
F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.Comment: 6 pages, 3 page
- âŠ