187 research outputs found

    Transformations of hydrocarbons of Ashal’hinskoe heavy oil under catalytic aquathermolysis conditions

    Get PDF
    © 2017, Pleiades Publishing, Ltd. The influence of temperatures of 250, 300, and 350°C on the character of changes in the group and hydrocarbon compositions of heavy oil from the Ashal’chinskoe field in laboratory experiments on the simulation of oil aquathermolysis processes under reservoir conditions has been revealed. The experiments have been carried out in the presence of kaolin as a rock-forming mineral, using oil-soluble iron carboxylate and tetralin as a proton donor. It has been shown that temperature elevation to 300 and 350°C increases the amount of saturated fractions by factors of 1.5 and 1.75, respectively, and decreases the resin content almost by half in comparison with the initial oil. The proportion of n-alkanes and light alkylcyclohexane and trimethylalkylbenzene homologues in the saturated fractions increases as a result of cracking reactions involving the preferential degradation of high-molecular-weight resins. A noticeable increase in the amount of newly formed hydrocarbons and asphaltenes at the temperature of 350°C indicates that not only intensive cracking processes, but also condensation processes occur under these conditions. Changes in the quantitative and qualitative composition of the proton donor tetralin by its dehydrogenation to form naphthalene and hydrogenation to yield the cis- and trans-isomers of decalin have been revealed

    Novel selective antagonist radioligands for the pharmacological study of A2B adenosine receptors

    Get PDF
    The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors

    New 2,6,9-trisubstituted adenines as adenosine receptor antagonists: a preliminary SAR profile

    Get PDF
    A new series of 2,6,9-trisubstituted adenines (5–14) have been prepared and evaluated in radioligand binding studies for their affinity at the human A1, A2A and A3 adenosine receptors and in adenylyl cyclase experiments for their potency at the human A2B subtype. From this preliminary study the conclusion can be drawn that introduction of bulky chains at the N6 position of 9-propyladenine significantly increased binding affinity at the human A1 and A3 adenosine receptors, while the presence of a chlorine atom at the 2 position resulted in a not univocal effect, depending on the receptor subtype and/or on the substituent present in the N6 position. However, in all cases, the presence in the 2 position of a chlorine atom favoured the interaction with the A2A subtype. These results demonstrated that, although the synthesized compounds were found to be quite inactive at the human A2B subtype, adenine is a useful template for further development of simplified adenosine receptor antagonists with distinct receptor selectivity profiles

    IL-4 Amplifies the Pro-Inflammatory Effect of Adenosine in Human Mast Cells by Changing Expression Levels of Adenosine Receptors

    Get PDF
    Adenosine inhalation produces immediate bronchoconstriction in asthmatics but not in normal subjects. The bronchospastic effect of adenosine is largely mediated through adenosine-induced mast cell activation, the mechanism of which is poorly understood due to limitations in culturing human primary mast cells. Here, we show that human umbilical cord blood -derived mast cells incubated with the Th2 cytokine IL-4 develop increased sensitivity to adenosine. Potentiation of anti-IgE- induced and calcium ionophore/PMA-induced degranulation was augmented in mast cells cultured with IL-4, and this effect was reduced or abolished by pre-treatment with A2BsiRNA and selective A2B receptor antagonists, respectively. IL-4 incubation resulted in the increased expression of A2B and reduced expression of A2A adenosine receptors on human mast cells. These results suggest that Th2 cytokines in the asthmatic lung may alter adenosine receptor expression on airway mast cells to promote increased responsiveness to adenosine

    Recent improvements in the development of A2B adenosine receptor agonists

    Get PDF
    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis

    Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability

    Get PDF
    Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis

    Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells

    Get PDF
    Expansion of the vasa vasorum network has been observed in a variety of systemic and pulmonary vascular diseases. We recently reported that a marked expansion of the vasa vasorum network occurs in the pulmonary artery adventitia of chronically hypoxic calves. Since hypoxia has been shown to stimulate ATP release from both vascular resident as well as circulatory blood cells, these studies were undertaken to determine if extracellular ATP exerts angiogenic effects on isolated vasa vasorum endothelial cells (VVEC) and/or if it augments the effects of other angiogenic factors (VEGF and basic FGF) known to be present in the hypoxic microenvironment. We found that extracellular ATP dramatically increases DNA synthesis, migration, and rearrangement into tube-like networks on Matrigel in VVEC, but not in pulmonary artery (MPAEC) or aortic (AOEC) endothelial cells obtained from the same animals. Extracellular ATP potentiated the effects of both VEGF and bFGF to stimulate DNA synthesis in VVEC but not in MPAEC and AOEC. Analysis of purine and pyrimidine nucleotides revealed that ATP, ADP and MeSADP were the most potent in stimulating mitogenic responses in VVEC, indicating the involvement of the family of P2Y1-like purinergic receptors. Using pharmacological inhibitors, Western blot analysis, and Phosphatidylinositol-3 kinase (PI3K) in vitro kinase assays, we found that PI3K/Akt/mTOR and ERK1/2 play a critical role in mediating the extracellular ATP-induced mitogenic and migratory responses in VVEC. However, PI3K/Akt and mTOR/p70S6K do not significantly contribute to extracellular ATP-induced tube formation on Matrigel. Our studies indicate that VVEC, isolated from the sites of active angiogenesis, exhibit distinct functional responses to ATP, compared to endothelial cells derived from large pulmonary or systemic vessels. Collectively, our data support the idea that extracellular ATP participates in the expansion of the vasa vasorum that can be observed in hypoxic conditions

    Functional selectivity of adenosine receptor ligands

    Get PDF
    Adenosine receptors are plasma membrane proteins that transduce an extracellular signal into the interior of the cell. Basically every mammalian cell expresses at least one of the four adenosine receptor subtypes. Recent insight in signal transduction cascades teaches us that the current classification of receptor ligands into agonists, antagonists, and inverse agonists relies very much on the experimental setup that was used. Upon activation of the receptors by the ubiquitous endogenous ligand adenosine they engage classical G protein-mediated pathways, resulting in production of second messengers and activation of kinases. Besides this well-described G protein-mediated signaling pathway, adenosine receptors activate scaffold proteins such as β-arrestins. Using innovative and sensitive experimental tools, it has been possible to detect ligands that preferentially stimulate the β-arrestin pathway over the G protein-mediated signal transduction route, or vice versa. This phenomenon is referred to as functional selectivity or biased signaling and implies that an antagonist for one pathway may be a full agonist for the other signaling route. Functional selectivity makes it necessary to redefine the functional properties of currently used adenosine receptor ligands and opens possibilities for new and more selective ligands. This review focuses on the current knowledge of functionally selective adenosine receptor ligands and on G protein-independent signaling of adenosine receptors through scaffold proteins

    Effects of adenosine A2A receptor activation and alanyl-glutamine in Clostridium difficile toxin-induced ileitis in rabbits and cecitis in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe <it>Clostridium difficile </it>toxin-induced enteritis is characterized by exuberant intestinal tissue inflammation, epithelial disruption and diarrhea. Adenosine, through its action on the adenosine A<sub>2A </sub>receptor, prevents neutrophillic adhesion and oxidative burst and inhibits inflammatory cytokine production. Alanyl-glutamine enhances intestinal mucosal repair and decreases apoptosis of enterocytes. This study investigates the protection from enteritis by combination therapy with ATL 370, an adenosine A<sub>2A </sub>receptor agonist, and alanyl-glutamine in a rabbit and murine intestinal loop models of <it>C. difficile </it>toxin A-induced epithelial injury.</p> <p>Methods</p> <p>Toxin A with or without alanyl-glutamine was administered intraluminally to rabbit ileal or murine cecal loops. Animals were also given either PBS or ATL 370 parenterally. Ileal tissues were examined for secretion, histopathology, apoptosis, Cxcl1/KC and IL-10.</p> <p>Results</p> <p>ATL 370 decreased ileal secretion and histopathologic changes in loops treated with Toxin A. These effects were reversed by the A<sub>2A </sub>receptor antagonist, SCH 58261, in a dose-dependent manner. The combination of ATL 370 and alanyl-glutamine significantly further decreased ileal secretion, mucosal injury and apoptosis more than loops treated with either drug alone. ATL 370 and alanyl-glutamine also decreased intestinal tissue KC and IL-10.</p> <p>Conclusions</p> <p>Combination therapy with an adenosine A<sub>2A </sub>receptor agonist and alanyl-glutamine is effective in reversing <it>C. difficile </it>toxin A-induced epithelial injury, inflammation, secretion and apoptosis in animals and has therapeutic potential for the management of <it>C. difficile </it>infection.</p

    Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury

    Get PDF
    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis
    corecore