408 research outputs found

    The design, construction and applications of a novel double-axis helium atom spectrometer

    Get PDF
    A novel helium atoms spectrometer has been developed for the study of elastic and inelastic collisions with surfaces. The spectrometer is a double-axis design, providing the experimentalist with the capability of using an analyzer crystal to provide energy resolution for either elastic or inelastic experiments. The spectrometer is novel in that scattering angle at both axes may be adjusted during the experiment, allowing great flexibility in the design and execution of experiments of solid surfaces;The mechanisms and operating characteristics of the spectrometer are described. The initial tests of the spectrometer, using the well characterized LiF(001) surface, are also presented. These tests demonstrate that the spectrometer may function as a high precision double-axis diffractometer. During these initial tests, spurious scattering events and an insufficient signal to background ratio prevented the observation of single phonon scattering. Subsequent modifications to improve the signal to background are described

    Bradykinin in asthma: Modulation of airway inflammation and remodelling

    Get PDF
    Bradykinin, a pro-inflammatory molecule, and its related peptides have been studied for their effects on acute reactions in upper and lower airways, where they can be synthesised and metabolized after exposure to different stimuli including allergens and viral infection. Bradykinin B1 and B2 receptors are constitutively expressed in the airways on several residential and/or immune cells. Their expression can also be induced by inflammatory mediators, usually associated with eosinophil and neutrophil recruitment, such as IL-4, IL-13, TNF-α IL-6 and IL-8, via intracellular MAPK and NF-κB signalling. In turn, the latters up-regulate both bradykinin receptors. Bradykinin activates epithelial/endothelial and immune cells, neurons and mesenchymal cells (such as fibroblasts, myofibroblasts and smooth muscle cells), which are implicated in the development of airway chronic inflammation, responsiveness and remodelling (a major feature of severe asthma). This review highlights the role of bradykinin and its receptors in respect to chronic inflammatory response involving eosinophils/neutrophils and to vascular/matrix-related airway remodelling in asthmatic airways. This scenario is especially important for understanding the mechanisms involved in the pathogenesis of eosinophilic and/or neutrophilic asthma and hence their therapeutic approach

    Prospectus, July 19, 2000

    Get PDF
    https://spark.parkland.edu/prospectus_2000/1018/thumbnail.jp

    Interactions of Ar(9+) and metastable Ar(8+) with a Si(100) surface at velocities near the image acceleration limit

    Full text link
    Auger LMM spectra and preliminary model simulations of Ar(9+) and metastable Ar(8+) ions interacting with a clean monocrystalline n-doped Si(100) surface are presented. By varying the experimental parameters, several yet undiscovered spectroscopic features have been observed providing valuable hints for the development of an adequate interaction model. On our apparatus the ion beam energy can be lowered to almost mere image charge attraction. High data acquisition rates could still be maintained yielding an unprecedented statistical quality of the Auger spectra.Comment: 34 pages, 11 figures, http://pikp28.uni-muenster.de/~ducree

    Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice

    Get PDF
    Background: It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated.Methods: In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21.Results: We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness.Conclusion: Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD
    corecore