340 research outputs found

    Transport and dynamical properties of inertial ratchets

    Full text link
    In this paper we discuss the dynamics and transport properties of a massive particle, in a time dependent periodic potential of the ratchet type, with a dissipative environment. The directional currents and characteristics of the motion are studied as the specific frictional coefficient varies, finding that the stationary regime is strongly dependent on this parameter. The maximal Lyapunov exponent and the current show large fluctuations and inversions, therefore for some range of the control parameter, this inertial ratchet could originate a mass separation device. Also an exploration of the effect of a random force on the system is performed.Comment: PDF, 16 pages, 7 figure

    Separation quality of a geometric ratchet

    Full text link
    We consider an experimentally relevant model of a geometric ratchet in which particles undergo drift and diffusive motion in a two-dimensional periodic array of obstacles, and which is used for the continuous separation of particles subject to different forces. The macroscopic drift velocity and diffusion tensor are calculated by a Monte-Carlo simulation and by a master-equation approach, using the correponding microscopic quantities and the shape of the obstacles as input. We define a measure of separation quality and investigate its dependence on the applied force and the shape of the obstacles

    Feynman's ratchet and pawl: an exactly solvable model

    Full text link
    We introduce a simple, discrete model of Feynman's ratchet and pawl, operating between two heat reservoirs. We solve exactly for the steady-state directed motion and heat flows produced, first in the absence and then in the presence of an external load. We show that the model can act both as a heat engine and as a refrigerator. We finally investigate the behavior of the system near equilibrium, and use our model to confirm general predictions based on linear response theory.Comment: 19 pages + 10 figures; somewhat tighter presentatio

    Cooperative Transport of Brownian Particles

    Full text link
    We consider the collective motion of finite-sized, overdamped Brownian particles (e.g., motor proteins) in a periodic potential. Simulations of our model have revealed a number of novel cooperative transport phenomena, including (i) the reversal of direction of the net current as the particle density is increased and (ii) a very strong and complex dependence of the average velocity on both the size and the average distance of the particles.Comment: 4 pages, 5 figure

    Ratchet Effect in Surface Electromigration: Smoothing Surfaces by an ac Field

    Full text link
    We demonstrate that for surfaces that have a nonzero Schwoebel barrier the application of an ac field parallel to the surface induces a net electro- migration current that points in the descending step direction. The magnitude of the current is calculated analytically and compared with Monte Carlo simulations. Since a downhill current smoothes the surface, our results imply that the application of ac fields can aid the smoothing process during annealing and can slow or eliminate the Schwoebel-barrier-induced mound formation during growth.Comment: 4 pages, LaTeX, 4 ps figure

    Behavior of Melanoma Cells in Cell and Organ Cultures: Use of Biomaterials to Activate Cells

    Get PDF
    It is well known that cell behaviors such as adhesion, proliferation and various synthesis are initiated from transmembrane signals. This study uses biomaterials as primary messengers of the cell activation pathways, and we have analyzed the effects of two biomaterials on highly metastatic tumor cells. B16F10 melanoma cells formed heterogeneous populations whose size varied with cell differentiation. In long-term organ cultures grown comparatively on AN 69 and Cuprophan (a biomembrane known to activate cells), we found that Cuprophan increased both adhesion and proliferation of small melanin-rich cells which represented differentiated melanocyte&. In dissociated cell cultures, the rate of early cell attachment decreased on Cupropban compared to AN 69 and control Thermanox® (Nunc Inc., Naperville, IL). Scanning electron microscopy of melanocytes four hoUl11 after plating out on Cuprophan revealed only cell aggregates, comparable to the 3T3 fibroblasts aggregates previously described. Nevertheless, the production of the second messenger cyclic adenosine monophosphate (cAMP) was the same on both materials, in contrast to previous results showing more cAMP in cells on Cuprophan. Therefore, biomaterials appear to be useful tools for investigating as well attachment, growth, differentiation as signal transduction pathways of cancerous cells

    Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface

    Get PDF
    We describe direct imaging measurements of the collective and relative diffusion of two colloidal spheres near a flat plate. The bounding surface modifies the spheres' dynamics, even at separations of tens of radii. This behavior is captured by a stokeslet analysis of fluid flow driven by the spheres' and wall's no-slip boundary conditions. In particular, this analysis reveals surprising asymmetry in the normal modes for pair diffusion near a flat surface.Comment: 4 pages, 4 figure

    Reducing vortex density in superconductors using the ratchet effect

    Full text link
    A serious obstacle that impedes the application of low and high temperature superconductor (SC) devices is the presence of trapped flux. Flux lines or vortices are induced by fields as small as the Earth's magnetic field. Once present, vortices dissipate energy and generate internal noise, limiting the operation of numerous superconducting devices. Methods used to overcome this difficulty include the pinning of vortices by the incorporation of impurities and defects, the construction of flux dams, slots and holes and magnetic shields which block the penetration of new flux lines in the bulk of the SC or reduce the magnetic field in the immediate vicinity of the superconducting device. Naturally, the most desirable would be to remove the vortices from the bulk of the SC. There is no known phenomenon, however, that could form the basis for such a process. Here we show that the application of an ac current to a SC that is patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern. The mechanism responsible for this phenomenon is the so called ratchet effect, and its working principle applies to both low and high temperature SCs. As a first step here we demonstrate that with an appropriate choice of the pinning potential the ratchet effect can be used to remove vortices from low temperature SCs in the parameter range required for various applications.Comment: 7 pages, 4 figures, Nature (in press

    Toward physical realizations of thermodynamic resource theories

    Get PDF
    Conventional statistical mechanics describes large systems and averages over many particles or over many trials. But work, heat, and entropy impact the small scales that experimentalists can increasingly control, e.g., in single-molecule experiments. The statistical mechanics of small scales has been quantified with two toolkits developed in quantum information theory: resource theories and one-shot information theory. The field has boomed recently, but the theorems amassed have hardly impacted experiments. Can thermodynamic resource theories be realized experimentally? Via what steps can we shift the theory toward physical realizations? Should we care? I present eleven opportunities in physically realizing thermodynamic resource theories.Comment: Publication information added. Cosmetic change

    Molecular motor that never steps backwards

    Full text link
    We investigate the dynamics of a classical particle in a one-dimensional two-wave potential composed of two periodic potentials, that are time-independent and of the same amplitude and periodicity. One of the periodic potentials is externally driven and performs a translational motion with respect to the other. It is shown that if one of the potentials is of the ratchet type, translation of the potential in a given direction leads to motion of the particle in the same direction, whereas translation in the opposite direction leaves the particle localized at its original location. Moreover, even if the translation is random, but still has a finite velocity, an efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print
    corecore