410 research outputs found
Drying in a microfluidic chip: experiments and simulations
We present an experimental micro-model of drying porous media, based on microfluidic cells made of arrays of pillars on a regular grid, and complement these experiments with a matching two-dimensional pore-network model of drying. Disorder, or small-scale heterogeneity, was introduced into the cells by randomly varying the radii of the pillars. The microfluidic chips were filled with a volatile oil and then dried horizontally, such that gravitational effects were excluded. The experimental and simulated drying rates and patterns were then compared in detail, for various levels of disorder. The geometrical features were reproduced well, although the model under-predicted the formation of trapped clusters of drying fluid. Reproducing drying rates proved to be more challenging, but improved if the additional trapped clusters were added to the model. The methods reported can be adapted to a wide range of multi-phase flow problems, and allow for the rapid development of high-precision micro-models containing tens of thousands of individual elements
Drying and percolation in spatially correlated porous media
We study how the dynamics of a drying front propagating through a porous medium are affected by small-scale correlations in material properties. For this, we first present drying experiments in micro-fluidic micro-models of porous media. Here, the fluid pressures develop more intermittent dynamics as local correlations are added to the structure of the pore spaces. We also consider this problem numerically, using a model of invasion percolation with trapping, and find that there is a crossover in invasion behaviour associated with the length-scale of the disorder in the system. The critical exponents that describe large enough events are similar to the classic invasion percolation problem, while the addition of a finite correlation length significantly affects the exponent values of avalanches and bursts, up to some characteristic size. We thus find that even a weak local structure can interfere with the universality of invasion percolation phenomena. This has implications for a variety of multi-phase flow problems, such as drying, drainage, and fluid invasion
A monitoring tool for a GRID operation center
WorldGRID is an intercontinental testbed spanning Europe and the US
integrating architecturally different Grid implementations based on the Globus
toolkit. The WorldGRID testbed has been successfully demonstrated during the
WorldGRID demos at SuperComputing 2002 (Baltimore) and IST2002 (Copenhagen)
where real HEP application jobs were transparently submitted from US and Europe
using "native" mechanisms and run where resources were available, independently
of their location. To monitor the behavior and performance of such testbed and
spot problems as soon as they arise, DataTAG has developed the EDT-Monitor tool
based on the Nagios package that allows for Virtual Organization centric views
of the Grid through dynamic geographical maps. The tool has been used to spot
several problems during the WorldGRID operations, such as malfunctioning
Resource Brokers or Information Servers, sites not correctly configured, job
dispatching problems, etc. In this paper we give an overview of the package,
its features and scalability solutions and we report on the experience acquired
and the benefit that a GRID operation center would gain from such a tool.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 3 pages, PDF. PSN MOET00
Resolved stellar population of distant galaxies in the ELT era
The expected imaging capabilities of future Extremely Large Telescopes (ELTs)
will offer the unique possibility to investigate the stellar population of
distant galaxies from the photometry of the stars in very crowded fields. Using
simulated images and photometric analysis we explore here two representative
science cases aimed at recovering the characteristics of the stellar
populations in the inner regions of distant galaxies. Specifically: case A) at
the center of the disk of a giant spiral in the Centaurus Group, (mu B~21,
distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant
elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate
synthetic frames by distributing model stellar populations and adopting a
representative instrumental set up, i.e. a 42 m Telescope operating close to
the diffraction limit. The effect of crowding is discussed in detail showing
how stars are measured preferentially brighter than they are as the confusion
limit is approached. We find that (i) accurate photometry (sigma~0.1,
completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing
us to recover the stellar metallicity distribution in the inner regions of
ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy
holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct
of the star formation history up to the Hubble time via simple star counts in
diagnostic boxes. For this latter case we discuss the possibility of deriving
more detailed information on the star formation history from the analysis of
their Horizontal Branch stars. We show that the combined features of high
sensitivity and angular resolution of ELTs may open a new era for our knowledge
of the stellar content of galaxies of different morphological type up to the
distance of the Virgo cluster.Comment: 21 pages, 17 figures, PASP accepted in pubblicatio
Stick-Slip Sliding of Water Drops on Chemically Heterogeneous Surfaces
We present a comprehensive study of water drops sliding down chemically heterogeneous surfaces formed by a periodic pattern of alternating hydrophobic and hydrophilic stripes. Drops are found to undergo a stick-slip motion whose average speed is an order of magnitude smaller than that measured on a homogeneous surface having the same static contact angle. This motion is the result of the periodic deformations of the drop interface when crossing the stripes. Numerical simulations confirm this view and are used to elucidate the principles underlying the experimental observations
Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b - First data from the GIARPS Commissioning
Context. Stellar activity is currently challenging the detection of young
planets via the radial velocity (RV) technique. Aims. We attempt to
definitively discriminate the nature of the RV variations for the young active
K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent
results on the existence of a substellar companion. Methods. We compare VIS
data with high precision RVs in the near infrared (NIR) range by using the
GIANO - B and IGRINS spectrographs. In addition, we present for the first time
simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS -
N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV
amplitude does not change at different wavelengths, while stellar activity
induces wavelength-dependent RV variations, which are significantly reduced in
the NIR range with respect to the VIS. Results. The NIR radial velocity
measurements from GIANO - B and IGRINS show an average amplitude of about one
quarter with respect to previously published VIS data, as expected when the RV
jitter is due to stellar activity. Coeval multi-band photometry surprisingly
shows larger amplitudes in the NIR range, explainable with a mixture of cool
and hot spots in the same active region. Conclusions. In this work, the claimed
massive planet around BD+20 1790 is ruled out by our data. We exploited the
crucial role of multi- wavelength spectroscopy when observing young active
stars: thanks to facilities like GIARPS that provide simultaneous observations,
this method can reach its maximum potential.Comment: 12 pages, 7 figure
RESVERATROL INCLUSION COMPLEX WITH β-CYCLODEXTRIN (RCD): CHARACTERIZATION AND EVALUATION OF TOXICITY IN WISTAR RATS
Objective: The aim of this study was to characterise the resveratrol inclusion complex with β-cyclodextrin (RCD) and evaluate their toxicity in wistar rats.Methods: The RCD were prepared in ultra-turrax. For characterization of the RCD were used: Fourier transform infra-red Spectroscopy, Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimetry (DSC) and X-ray powder diffraction. The RCD and others 4 treatments were performed by the chronic oral administration in 35 rats during 60 ds. After the treatments they were euthanized and the serum blood were collected to analyzed some hemogram and biochemical parameters including aspartyl aminotransferase (AST); alanine aminotransferase (AST); phosphatase alkaline (ALP); total bilirubin (TB); direct bilirubin (DB); total protein (TP); total cholesterol (TC), triacylglycerol (TAG), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), calcium, iron and phosphate using fully automated biochemistry analyzer.Results: The characterization results indicated a successful formation of the RCD. All hematological parameters analysed were within the normal values in all the groups. Furthermore, the hemogram and biochemical parameters were significantly (P>0.05) similar to the control group.Conclusion: The daily oral administration during 60 d of RCD are not harmful on blood parameters of Wistar rats. Thus, RCD can be used safely for treatment of some metabolic diseases
- …