3,616 research outputs found

    Gravitational waves in an anomaly-induced inflation

    Full text link
    The behaviour of gravitational waves in the anomaly-induced inflationary phase is studied. The metric perturbations exhibit a stable behaviour, with a very moderate growth in the amplitude of the waves. The spectral indice is computed, revealing an almost flat spectrum.Comment: 4 pages. Talk presented at IRGA 2003 (Renormalization Group and Anomalies in Gravitation and Cosmology, Ouro Preto, Brazil, 16-23 March, 2003

    Vacuum effective action and inflation

    Get PDF
    We consider vacuum quantum effects in the Early Universe, which may lead to inflation. The inflation is a direct consequence of the supposition that, at high energies, all the particles can be described by the weakly interacting, massless, conformally invariant fields. We discuss, from the effective field theory point of view, the stability of inflation, transition to the FRW solution, and also possibility to study metric and density perturbations.Comment: 6 pages, LaTeX, no figures. Contribution to the Proceedings of the X Jorge Andre Swieca school in Particles and Fields. To be published in World Scientifi

    Perturbative analysis of generalized Einstein's theories

    Get PDF
    The hypothesis that the energy-momentum tensor of ordinary matter is not conserved separately, leads to a non-adiabatic expansion and, in many cases, to an Universe older than usual. This may provide a solution for the entropy and age problems of the Standard Cosmological Model. We consider two different theories of this type, and we perform a perturbative analysis, leading to analytical expressions for the evolution of gravitational waves, rotational modes and density perturbations. One of these theories exhibits satisfactory properties at this level, while the other one should be discarded.Comment: 14 pages, Latex fil

    Modified gravity models and the central cusp of dark matter haloes in galaxies

    Get PDF
    The N-body dark matter (DM) simulations point that DM density profiles, e.g. the Navarro Frenk White (NFW) halo, should be cuspy in its centre, but observations disfavour this kind of DM profile. Here we consider whether the observed rotation curves close to the galactic centre can favour modified gravity models in comparison to the NFW halo, and how to quantify such difference. Two explicit modified gravity models are considered, Modified Newtonian Dynamics (MOND) and a more recent approach renormalization group effects in general relativity (RGGR). It is also the purpose of this work to significantly extend the sample on which RGGR has been tested in comparison to other approaches. By analysing 62 galaxies from five samples, we find that (i) there is a radius, given by half the disc scale length, below which RGGR and MOND can match the data about as well or better than NFW, albeit the formers have fewer free parameters; (ii) considering the complete rotation curve data, RGGR could achieve fits with better agreement than MOND, and almost as good as a NFW halo with two free parameters (NFW and RGGR have, respectively, two and one more free parameters than MOND)

    Interacting photon-baryon fluid, warm dark matter and the first acoustic peak

    Get PDF
    The Reduced Relativistic Gas (RRG) model was introduced by A. Sakharov in 1965 for deriving the cosmic microwave background (CMB) spectrum. It was recently reinvented by some of us to achieve an interpolation between the radiation and dust epochs in the evolution of the Universe. This model circumvents the complicated structure of the Boltzmann-Einstein system of equations and admits a transparent description of warm-dark-matter effects. It is extended here to include, on a phenomenological basis, an out-of-equilibrium interaction between radiation and baryons which is supposed to account for relevant aspects of pre-recombination physics in a simplified manner. Furthermore, we use the tight-coupling approximation to explore the influence of both this interaction and of the RRG warmness parameter on the anisotropy spectrum of the CMB. The predictions of the model are very similar to those of the {\Lambda}CDM model if both the interaction and the dark-matter warmness parameters are of the order of 10410^{-4} or smaller. As far as the warmness parameter is concerned, this is in good agreement with previous estimations on the basis of results from structure formation.Comment: 10 pages and 4 figure
    corecore